UPC. EETAC. Bachelor degree. Second course 2A. Digital Circuits and Systems (<u>CSD</u>). Dr F. J. Robert. Grades will be available online on June 11th. Questions about the exam at <u>office time</u>.

Exam 2. June 4th, 2021

Problem 1. (2.5p)

Analyse the circuit represented in Fig. 1.

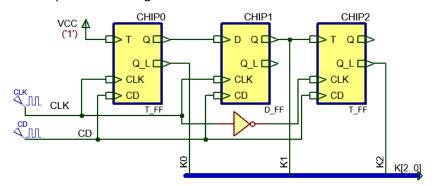


Fig. 1 Circuit based on 1-bit memory cells and logic gates.

- 1. Determine the output vector **K[2..0]** drawing a <u>timing diagram</u> considering enough CLK periods.
- **2.** Write down the binary codes generated.
- **3.** Explain how many VHDL files are necessary to develop and simulate the circuit using EDA tools.

Problem 2. (3.5p)

Design (specify and plan) the programmable rectangular wave generator represented in Fig. 2 using VHDL techniques and structural plan C2 for a target FPGA chip. The FSM is controlling a datapath based on a *Counter_mod16*. The 4-bit radix-2 number **NH** establishes the number of CLK pulses where wave output (**W**) is high, **NL** establishes the number of CLK pulses where W is low. **Run** output is high when running and low when idle.

Tw = (NH+NL). Talk

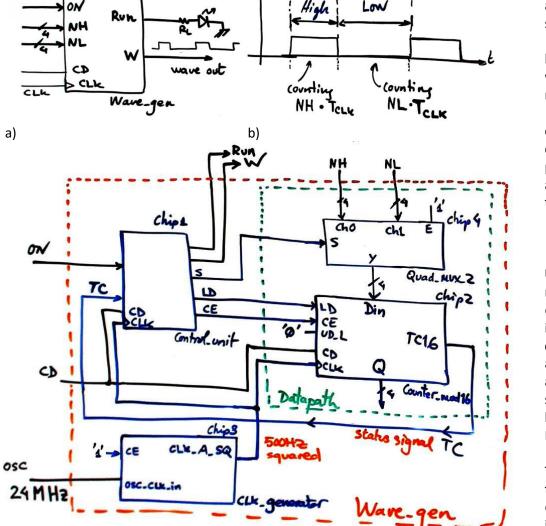
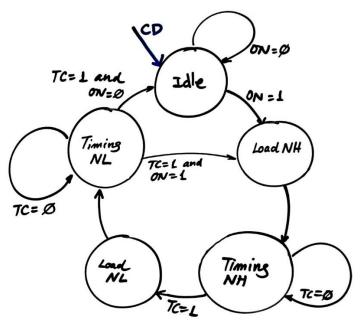


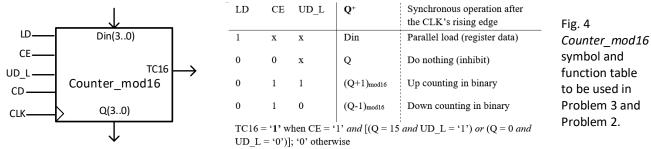
Fig. 2.
a) Wave_gen
symbol.

- b) Example W waveform when running.
- c) Proposed dedicated processor architecture for this project.

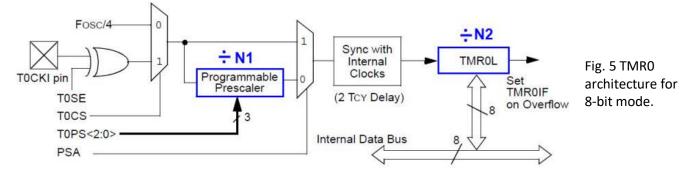
UD_L = '0'
means that the
Counter_mod16
is configured as
down counter
and thus TC16 is
a zero detector
status signal to
be used by the
FSM.

The function table of *Counter_mod16* is in Fig. 4.




Fig. 3. State diagram proposed for Chip1 control unit (FSM) showing only states and transitions.

- 1. Invent the Chip3 CLK_Generator to obtain a 500 Hz square wave from the 24 MHz crystal oscillator.
- 2. Calculate the frequency of the output rectangular wave W when NH =10 and NL = 4.
- 3. Explain how many D FF registers will contain this project Wave gen.
- **4.** Draw the Chip1 internal FSM architecture connecting all the control unit inputs and outputs.
- 5. Draw the Chip1 CC2 truth table to determine all the outputs represented usually in parenthesis in Fig. 3.
- **6.** Invent an alternative architecture for the datapath if *Counter_mod16* is used as **up counter** with UD_L = '1'.


Problem 3. (4p)

Design the DIC18E4E30 microscottroller version of the Counter mod16 using a plan V adaptation (no state

Design the PIC18F4520 microcontroller version of the *Counter_mod16* using a plan Y adaptation (no state enumeration, *current_state* is a RAM variable to save the current binary number that is copied to Q outputs).

- 1. Draw the hardware: input switches, buttons, outputs, reset (MCLR_L) and 12 MHz quartz crystal oscillator.
- **2.** Draw the hardware-software diagram. Why the CLK for counting has to be connected to RBO/INTO pin? What the interrupt service routine *ISR()* is used for?
- **3.** Organise and name RAM variables for the project. Explain how to configure port pins and interrupts in *init_system()*.
- **4.** Explain how to poll the input values using bitwise operations in *read_inputs()*.
- 5. Explain how to drive the five output pins using bitwise operations in write_outputs().
- **6.** Draw the truth table and flowchart for the *output logic()*.
- 7. What functions will be modified and how if we like to add an LCD to represent counter states?
- 8. How to configure and program the TMR0 to replace the external CLK if we require counting at 100 Hz?

UPC. EETAC. Bachelor degree. Second course 2A. Digital Circuits and Systems (<u>CSD</u>). Dr F. J. Robert. Grades will be available online on June 11th. Questions about the exam at <u>office time</u>.

Exam 2. June 4th, 2021

(Complementary questions for developing and testing the final project using microcontroller EDA tools.)

- **9.** Draw the truth table and the flowchart for the *state_logic()*.
- **10.** Develop the project in Proteus and MPLABX, debug and verify. This is another P10 example.
- Phase #1: Only up counting. Adapt hardware and software from the tutorial plan Y Counter mod1572.
- Phase #2: Up and down. This is basically modify state_logic()
- Phase #3: Parallel data inputs. This is again basically modifying state_logic()
- Phase #4: Add an LCD to represent binary and decimal unsigned numbers.