UPC. EETAC. Bachelor Degree. 2A. Digital Circuits and Systems (<u>CSD</u>). Grades will be available online by November 12th. Questions about the exam at <u>office time</u>.

Midterm exam. November 4th, 2021

Problem 1. (3.5p)

Analyse the digital circuit in Fig. 1. This means finding the circuit's truth table V = f(C(4..0)).

Fig. 1. Circuit to analyse. Electrical characteristics of the logic family.

- 1. Draw your analysis plan using a concept map. Find the circuit's algebraic equation.
- 2. Apply Boolean algebra to simplify and obtain SoP (or PoS).
- 3. From SoP (or PoS), add missing variables to deduce the circuit's truth table.
- 4. Invent the circuit from SoP (or PoS) using only 2-input NOR gates.
- 5. Represent logic values, voltages and noise margins for this logic family.
- 6. If a single gate dissipates 15 μ W, calculate the circuit power consumptions when V is driving ON and OFF an active-low LED with I_{DQ} = 8.5 mA and V_{AKQ} = 1.75 V. Calculate the LED's limiting resistor.
- 7. How fast is the circuit performing the truth table?

Problem 2. (1.5p)

Fig. 2 is an standard 74HCT138D chip, a commercial 3 to 8 decoder.

- 1. Rename inputs and outputs using our CSD style and draw its symbol DEC_3_8 and truth table.
- 2. Design the 74HCT138D using our elemental blocks *DEC_2_4* following plan C2 based on a hierarchy of components.
- 3. Invent the following function T = f(A, B, C, D) using the method of decoders (MoD). How many VHDL files will require your circuit?

$$T = \prod M(0, 2, 5, 7, 8, 10, 13, 15)$$

Control			Input			Output							
E1	E2	E 3	A2	A1	A0	Y7	Y 6	Y 5	Y4	Y 3	Y2	Y 1	Y0
Н	Χ	Χ	Χ	Х	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Χ	Н	Χ											
Χ	X	L											
L	L	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	L
			L	L	Н	Н	Н	Н	Н	Н	Н	L	Н
			L	Н	L	Н	Н	Н	Н	Н	L	Н	Н
			L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
			Н	L	L	Н	Н	Н	L	Н	Н	Н	Н
			Н	L	Н	Н	Н	L	Н	Н	Н	Н	Н
			Н	Н	L	Н	L	Н	Н	Н	Н	Н	Н
			Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н

Fig. 2. 74HCT138D standard chip symbol and truth table.

Problem 3. (1.5p)

We have in mind inventing the circuit in Fig. 3 for performing simple logic operations.

F(10)	$P = f(F_1, F_0, A, B)$				
00	(A + B)'	NOR			
01	(A · B)'	NAND			
10	$A \oplus B$	XOR			
11	(A ⊕ B)'	NXOR			

Fig. 3. *Prog_gate* circuit symbol and logic operations.

- 1. How long is the circuit's truth table? How many minterms does P contain?
- 2. Invent the *Prog_gate* circuit using the method of multiplexers (MoM) and a MUX_2. How many VHDL files are required?
- 3. How fast is the circuit if the technology in Fig. 1 is used? Explain whether it is faster or slower that inventing it using a canonical circuit.

Problem 4. (3.5p)

Fig. 4 shows the arithmetic circuit Int_Add_Subt_12bit to perform additions and subtractions for integer numbers.

Fig. 4. Arithmetic circuit for integer operands. OP = '0' \rightarrow add; OP = '1' \rightarrow subtract.

- 1. How long is the circuit's truth table? What is the range of the operands and result?
- 2. Solve the following integer operations determining all outputs.

```
A = -2001 B = +2021 OP = '0'

A = -2001 B = +2021 OP = '1'

A = (1010001111110)_2 B = (011000111110)_2 OP = '1'

A = (1010001111110)_2 OP = '0'
```

- 3. Propose and complete an internal architecture for this *Int_Add_Subt_12bit* circuit based on plan C2.
- 4. Determine how many VHDL files contain your architecture.
- 5. Design flag indicators **S** (sign bit), **OV** (overflow) and **Z** (zero result) using logic gates.
- 6. Estimate the propagation delay of the circuit if the technology in Fig. 1 is used.
- 7. How long will it take to complete a full simulation at maximum speed? What tool will be used to perform such measurements?