

Problems on digital

circuits and systems

(CSD)

Francesc J. Robert
Josep Jordana

2021 (V3)

http://www.upc.cat/
http://eetac.upc.edu/

http://creativecommons.org/licenses/by/3.0/
http://opendefinition.org/

4

Contents

7

Contents

Preface ... 11

Combinational circuits .. 15

P1 Logic gates and Boolean algebra .. 16
Objectives .. 16

1.1 Circuit analysis, truth tables and maxterms and minterms 17
1.2 Design Circuit_C using minimised equations 20
1.3 Design Circuit_K using minimised equations 21
1.4 Circuits using only NOR or only NAND ... 22
1.5 Circuits using only NOR or only NAND ... 23
1.6 Logic equations (PoS, SoP, maxterms, minterms)................................ 23

P2 Standard logic circuits and flat VHDL design .. 25
Objectives .. 25

2.1 Using VHDL EDA tools for synthesis and simulation 26
2.2 Designing a MUX_8 using several architectures 27
2.3 Designing a HEX_7SEG_decoder .. 28
2.4 Designing a 10-line to 4-line priority encoder 29
2.5 Designing an 8-line to 3-line priority encoder 32
2.6 A digital wind direction meter ... 34

P3 Arithmetic circuits: adders, multipliers, comparators, etc. and VHDL
hierarchical design (plan C2) ... 39
Objectives .. 39

3.1 Logic functions using the methods of decoders 40
3.2 Logic functions using the method of multiplexers 41
3.3 Design a 1-bit full adder (flat) .. 42
3.4 Design a 1-bit full adder (structural) .. 43
3.5 Design a 1-bit comparator ... 44
3.6 Designing a MUX_8 using a multiple-file structure.............................. 45
3.7 4-bit ripple adder ... 46
3.8 8-bit binary adder using 4-bit carry-look ahead adders 47
3.9 Designing a 6-bit comparator using VHDL ... 48
3.10 Counting occupied parking slots (32-bit ones’ counter) 50
3.11 1-bit subtractor .. 52

P4 Arithmetic circuits for 2C integer numbers and gate-level simulations for
propagation delay measurements .. 53

Problems on digital circuits and systems

8

Objectives .. 53
4.1 Addition and subtraction in two’s complement 54
4.2 Designing an 8-bit adder/subtractor for integer numbers 55
4.3 Designing a 10-bit comparator for radix-2 and 2C numbers 56
4.4 Performing gate-level simulations and propagation time
measurements ... 57
4.5 How to design an 8-bit multiplier for 2C integer numbers? 58

Sequential systems ... 61

P5 1-bit memory cells: latches and flip-flops .. 62
Objectives .. 62

5.1 Designing and using an RS latch. Deducing an RS_FF. 63
5.2 Data flip-flop (D_FF) ... 64
5.3 Analysis of a synchronous circuit ... 65
5.4 JK_FF and analysis of an asynchronous circuit..................................... 66
5.5 Analysis of a synchronous circuit ... 69
5.6 Design a toggle flip-flop (T_FF) using the FSM strategy....................... 70
5.7 Design a JK flip-flop using the FSM strategy .. 71
5.8 Analysis of an asynchronous counter (type 7493) 72
5.9 Analysis of an asynchronous circuit based on T_FF 73
5.10 Design a combinational circuit using the method of ROM
memories ... 74
5.11 Design a HEX_7seg using the method of ROM memories 75

P6 Finite State Machines (FSM) .. 76
Objectives .. 76

6.1 Controlling the classroom luminaires .. 77
6.2 Invent a bicycle torch ... 78
6.3 Debouncing circuit ... 78
6.4 16-key matrix encoder ... 79
6.5 Water tank controller .. 80
6.6 Traffic light controller .. 82
6.7 Stepper motor controller ... 83
6.8 7-segment digit sequencer .. 84

P7 Standard counters and registers .. 86
Objectives .. 86

7.1 1-digit BCD counter (flat) ... 87
7.2 Synchronous universal 4-bit binary counter .. 88
7.3 Synchronous modulo 12 counter ... 90
7.4 Data register ... 91
7.5 Shift register ... 92
7.6 Hour counter for a real-time clock ... 93

Preface

9

7.7 6-bit binary universal counter .. 95
7.8 Johnson counter ... 97
7.9 PIC18F4520 TMR2 prescaler design ... 99

P8 Dedicated processors and advanced circuits ... 101
Objectives .. 101

8.1 Generation of CLK signals ... 102
8.2 Pulse generator .. 103
8.3 Designing an industrial application .. 105
8.4 Design a 2-digit even/odd counter with start/stop button 107
8.5 Synchronous serial adder ... 108
8.6 Timer MMSS ... 109
8.7 Synchronous serial multiplier ... 110
8.8 Serial transmitter and receiver (USART) .. 111
8.9 Steeping motor control based on a dedicated processor 112

Microcontroller applications .. 114

P9 Basic theory on microcontrollers (µC) and basic digital I/O interface 114
Objectives .. 114

9.1 The microcontroller PIC16F .. 115
9.2 Invent a Dual_MUX4 based on a µC .. 118
9.3 1-digit BCD adder ... 119
9.4 12-to-4 encoder ... 121

P10 Programing FSM in C style. Events detection using interrupts 123
Objectives .. 123

10.1 1-digit BCD counter .. 124
10.2 Binary counter modulo 256 ... 124
10.3 4-bit serial data transmitter ... 125
10.4 5-bit Johnson counter .. 127
10.5 Stepper motor controller ... 128

P11 Peripherals: LCD display ... 131
Objectives .. 131

11.1 LCD display using ASCII messages and static data 132
11.2 LCD display using dynamic data ... 132
11.3 Interfacing an I2C display ... 132

P12 Peripherals and complex applications ... 133
Objectives .. 133

12.1 Industrial application ... 134
12.2 Simple remote control ... 135
12.3 Non-retriggerable timer ... 137
12.4 Timers. PWM generation ... 139

Problems on digital circuits and systems

10

12.5 Temperature measurement using timers 141
12.6 Temperature measurement using A/D converters 141

Bibliography and internet links ... 143

Bibliography .. 143
Internet links ... 143

Preface

11

Preface

This publication is the initial draft of a collection of problems and exercises
from the former Digital Electronics (ED) and Digital Electronic Systems (SED)
subjects and from past editions of the Digital Circuits and Systems (CSD)
course for which this learning resource has been created. The publication,
which is now under construction, will contain reviewed versions of design
exercises from the three chapters in which CSD is organised: combinational
circuits, finite state machines (FSM) and dedicated processors, and
microcontrollers.
The aim of this publication is to help students to develop the following
telecommunications engineering competencies associated with the CSD
course:

 CE 14 TELECOM. A capacity for the analysis and design of synchronous
and asynchronous combinatorial and sequential circuits, and the
ability to use microprocessors and integrated circuits.

 CE 15 TELECOM. Knowledge of and the ability to apply the
fundamentals of hardware description languages. (CIN/352/2009, BOE
20/2/2009)

 PROJECT MANAGEMENT - Level 1: The ability to use project
management tools to carry out the stages of a project set by the
professor.

 EFFICIENT USE OF EQUIPMENT AND INSTRUMENTS - Level 1: The
ability to use the instruments, equipment and software of the
laboratories for general or basic use and to carry out experiments and
practicals and analyse the results.

 INDEPENDENT LEARNING - Level 1. The ability to complete tasks in the
time allotted, using the suggested materials and following the
guidelines set by the professor.

 EFFECTIVE ORAL AND WRITTEN COMMUNICATION - Level 1. The
ability to complete tasks in the time allotted, using the suggested
materials and following the guidelines set by the professor. The ability

https://mitra.upc.es/SIA/infoweb.unitatDocent?w_idioma=ENG&w_codi_ud_p=300022
https://mitra.upc.es/SIA/infoweb.unitatDocent?w_idioma=ENG&w_codi_ud_p=300022

Problems on digital circuits and systems

12

to plan oral presentations, correctly reply to questions and write basic
texts without spelling and grammar mistakes.

 TEAMWORK - Level 1. The ability to take an active role in group work,
which includes identifying specific goals, determining collective and
individual responsibilities and reaching a consensus on the most
suitable approach to adopt for each problem.

 FOREIGN LANGUAGE. Knowledge of a foreign language, preferably
English, at an oral and written level that is consistent with what is
required of students on each degree.

We would appreciate your comments on this list of projects, so that we can
enhance the process of finding errors and making improvements.
The table of contents is structured following the course web page.

Course organisation and basic learning goals

 Use your official UPC email address to communicate with your
instructors for these reasons [8].

 Use and manage an e-mail client like Thunderbird [9] or Outlook.

 Use a SMB disk like your mapped “L” to carry out projects and
assignments on school premises.

 Discuss the five elements required to achieve effective cooperative
learning: positive interdependence; face-to-face interaction, individual
accountability and personal responsibility, use of interpersonal and
small-group skills and group processing or reflection.

http://digsys.upc.edu/
http://www.co-operation.org/
http://www.co-operation.org/

Preface

13

 Analyse and manage your individual and group study time. Be aware
that 6 ECTS are equivalent to 150 hours of study time.

 Produce quality written solutions for your projects using pen-and-
paper. Then (optionally) use this template to complete and save the
solutions in electronic format. Generally, project solutions consist of
specifications, plan, development, test, report and, in some selected
exercises, prototyping.

 (Optional) Use Google sites or a similar application to build your
cooperative group ePortfolio and publish your projects, results and
reflection.

http://digsys.upc.edu/csd/units/project/CSD_project_template.docx
https://sites.google.com/
http://digsys.upc.edu/csd/units/eP/ePortfolio.html

14

 1

Combinational circuits

15

Combinational circuits

Problems on digital circuits and systems

16

P1 Logic gates and Boolean algebra

Objectives

After studying the content of these projects, you will be able to:

 Use and explain the functionality of logic gates AND, NAND, OR, NOR,
XOR, NXOR and NOT.

 Find datasheets of small and medium scale of integration (SSI and
MSI) integrated circuits.

 Analyse a logic circuit built using logic gates (deduce its truth table).

 Explain and relate the following concepts for designing a logic circuit:
truth table, canonical algebraic equations: minterms and maxterms,
Boolean algebra and logic functions, minimisation: SoP (sum of
products) and PoS (product of sums).

 Simplify or minimise logic functions using software like Minilog.exe.

 Use the application WolframAlpha to verify logic equations and
determine the truth table of a combinational circuit.

 Use the HADES JAVA-based platform or Deeds to visualise and analyse
the operation of digital circuits.

 Capture and simulate a schematic using the virtual laboratory
software Proteus-ISIS or MultiSim.

 Search books and the internet to find information on the basics of
VHDL language and explain the differences between VHDL design
styles: structural and behavioural.

 Use the register transfer level (RTL) and technology schematic views
to inspect the results of the synthesis process.

 Explain the basic technological details of an sPLD (22V10), CPLD or
FPGA and how to program them to implement logic functions.

 Install computer-aided design (CAD) and electronic design automation
(EDA) tools (Lattice Semiconductor ispLEVER Classic or Diamond, Intel
Quartus II or Prime, and Xilinx ISE or Vivado), and run its design flow
to implement VHDL projects for sPLD/CPLD/FPGA chips. Essentially
the process involves VHDL source files, synthesis, functional
simulation, pin assignment, gate-level simulation, target device
programming and prototype verification.

 Simulate a logic circuit using EDA tools: ActiveHDL Lattice edition,
ModelSim Intel edition or Xilinx ISim.

 Use sPLD/CPLD/FPGA development boards to prototype and verify the
course projects.

http://www.wolframalpha.com/
http://digsys.upc.es/ed/CSD/units/Hades/hades.html
http://www.esng.dibe.unige.it/deeds/
http://www.labcenter.co.uk/
http://www.ni.com/multisim
http://www.latticesemi.com/
https://www.intel.com/content/www/us/en/software/programmable/overview.html
https://www.xilinx.com/

Combinational circuits

17

1.1 Circuit analysis, truth tables and maxterms and minterms

The aim of this exercise is firstly to analyse circuits A and B in Fig. 1 to obtain
their truth tables P =
https://digsys.upc.edu/csd/plan/lab1_1/Plan_Section_A.jpgf(S1, S0, A, B); Q =
f(S1, S0, A, B) and secondly to draw another equivalent circuit using the
canonical logic equations (maxterms and minterms).

Let us establish a plan to solve this problem. Consider Circuit A and Circuit B as
complete independent problems. First, solve Circuit A before continuing with

Fig. 1
Circuit_1A and
Circuit_1B composed
of a network of logic
gates.

Problems on digital circuits and systems

18

Circuit B. Fig. 2 shows several ways to plan how to determine the truth table
of a given simple combinational circuit composed of logic gates.

Fig. 2
Multiple planning
paths to analyse
a circuit of logic

gates.

Phase A: Deduce and verify the circuit’s truth table:

1. Method I. Draw the Circuit A, capture the schematics in Proteus and
run simulations to obtain its truth table. There are up to 16 input
combinations to complete the circuit truth table.

2. Method II. Deduce the logic equation that exactly matches the circuit.
The numerical engine WolframAlpha can be used to obtain the truth
table by typing the equation directly and analysing the computer
results.

3. Method III. Apply Boolean algebra to determine the truth table (which
is equivalent to the sum of minterms or the product of maxterms). In
this way, the SoP or PoS expressions will be obtained as a step
towards the final truth table.

4. Method IV. Run a VHDL design flow using EDA tools (a single-file
structural project, circuit synthesis and test bench functional
simulation) to produce a circuit. Verify the circuit by means of a timing
diagram from which to annotate a truth table that must be identical
to that deduced using any of the three previous methods.

http://digsys.upc.edu/csd/units/WolframAlpha/WolframAlpha.html

Combinational circuits

19

Phase B: Invent several circuits from the given truth table, as shown in the
map in Fig. 3.

Fig. 3
Invention of circuits
from the same initial
truth table.

5. Invent a canonical Circuit_3 using the product of maxterms.
6. From Circuit_3, obtain a new Circuit_5 based on 2-input NOR gates.
7. Create a new Circuit_2 by minimising the truth table and choosing

PoS.
8. From Circuit_2, derive a new Circuit_4 based on 2-input NAND gates.

 Some ideas on the solution to the analysis problem can be found in this
tutorial.

http://digsys.upc.edu/csd/P01/P1_T/P1_tut_canonical.html

Problems on digital circuits and systems

20

1.2 Design Circuit_C using minimised equations

This exercise has two aims: first to analyse Circuit_C in Fig. 4 to obtain its truth
table, and second to draw an equivalent circuit using minimised equations like
the sum of products (SoP) or the product of sums (PoS).

Let us follow the plan depicted in Fig. 2:
- Phase A: obtain the circuit’s truth table by means of at least two of

the four methods proposed, so that you can check that the truth table
is correct.

- Phase B: invent another circuit using minimised equations.
Use an application like Minilog or Logic Friday to obtain minimised equations
from a given truth table.

 Some ideas on the solution to the analysis problem can be found in this
tutorial.

Fig. 4

Circuit_C
composed of a

network of logic
gates.

http://digsys.upc.edu/ed/CSD/units/Ch1/U1_08/Unit1_8.html
http://digsys.upc.edu/csd/soft/logic_friday_setup.exe
http://digsys.upc.edu/csd/P01/P1_T/P1_tut_SoP_PoS.html

Combinational circuits

21

1.3 Design Circuit_K using minimised equations

This exercise has two aims, first to analyse Circuit_K in Fig. 5 to obtain its truth
table, and second to draw an equivalent circuit using minimised equations like
the sum of products (SoP) or the product of sums (PoS).

Let us follow the plan shown in Fig. 2:

- Phase A: obtain the circuit’s truth table by means of at least two of
the four proposed methods, so that you can check the truth table is
correct.

- Phase B: invent another circuit using minimised equations.
Use an application like Minilog or Logic Friday to obtain minimised equations
from a given truth table.

 Some ideas on the solution of this analysis problem can be found in this
tutorial.

Fig. 5
Circuit_K composed
of a network of logic
gates.

http://digsys.upc.edu/ed/CSD/units/Ch1/U1_08/Unit1_8.html
http://digsys.upc.edu/csd/soft/logic_friday_setup.exe
http://digsys.upc.edu/csd/P01/P1_T/P1_tut_SoP_PoS.html

Problems on digital circuits and systems

22

1.4 Circuits using only NOR or only NAND

Given the following Boolean expression:

𝑄 = 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 · 𝑦 + 𝑦′ · 𝑧

a) Draw the circuit’s truth table and symbol. Represent the circuit using
only NAND logic gates.

b) Express the output as a sum of minterms and a product of maxterms.
c) With the equation obtained in b), represent the circuit using only-NOR

logic gates.
d) Calculate the maximum frequency of operation of this circuit if the

propagation delay time tPHL and tPLH of a gate of this kind, for instance
74HCT technology is 21 ns.

e) How would you use the VHDL simulator to verify the truth table of this
digital circuit?

The representation in Fig. 6 is a map that can help to comprehend the
concepts. Once you have deduced the circuit’s truth table, you can produce
several circuits that meet the same specifications.

Fig. 6

Concept map to
explain the idea of
extracting several

circuits from the
same initial

specifications.

Combinational circuits

23

1.5 Circuits using only NOR or only NAND

Interpret the following table output format in Fig. 7 from Minilog.
- Draw the symbol of the circuit.
- First draw the logic circuit for the output A_L = f1 (D, C, B, A) using only NOR

gates, and second modify the circuit so that all the gates are 2-input NOR.
- First draw the circuit for the output B_L = f2 (D, C, B, A) using only NAND

gates, and second modify the circuit so that all the gates are 2-input NAND.
- How many maxterms and minterms contain the function E_L = f3 (D, C, B, A)?

 MINIMISATION RESULT STATISTICS

==============================
FOUND 28 ESSENTIAL FACTORS IN

PRODUCT OF SUMS MODE
MAXIMUM FANIN: 18
TOTAL LITERAL COUNT: 102

MAXIMUM FACTOR SIZE: 3
MAXIMUM OUTPUT FUNCTION SIZE: 6

Note: Remember that you must deduce the equivalent

equations before you draw the circuits.

===========

 ABE

DCBA LLL

===========

011- | 1..

10-0 | 1..

-1-1 | 111

0--1 | 1..

1-0- | 1..

-00- | 1..

11-- | .1.

0-10 | .1.

1-0 - | .1.
1-11 | .1.

Fig. 7
Output table format
from a given circuit
described in Minilog.

1.6 Logic equations (PoS, SoP, maxterms, minterms)

Fig. 8 shows the block diagram and the truth table of an 8-to-3 encoder
(Enc_8_3), a typical next section example of standard circuit. When several
inputs are active high at the same time, a binary code is generated of the
highest priority signal. The symbol “-” means a “don’t care” value that is
represented other times by “x”. GS goes high when any input is assessed, thus
it can be used both as a flag to indicate that a key is pressed and for
disambiguation of the code “000”.

- Represent the output Y2 = f(X7… X0) using a product of sums (PoS).
- Represent the output Y1 = f(X7… X0) using a sum of products (SoP).
- Represent the output GS using maxterms. How many minterms will

the function have?
- Write down the single-file (flat) VHDL code using either structural

(plan A) or behavioural (plan B) style. Explain the differences between
the two coding styles.

http://digsys.upc.edu/csd/units/minilog/minilog.html

Problems on digital circuits and systems

24

Fig. 8
The symbol and

truth table of a
combinational

circuit.

Combinational circuits

25

P2 Standard logic circuits and flat VHDL design

Objectives

After studying the content of these projects, you will be able to:

 Explain the specifications and characteristics of the standard
combinational logic blocks: multiplexers (or data selectors), de-
multiplexers (or data distributors), decoders, encoders, hexadecimal
to seven-segment LED displays adapters, code converters, etc.
Specifications include concepts like: symbol, truth table and
functionality, internal design, expandability, and commercial chips of
similar characteristics.

 Explain the functionality of the enable input that is available in most
of these standard circuits.

 Explain the concepts of flat and hierarchical designs and implement
simple projects in VHDL involving a single file (flat) using structural
(plan A) or behavioural (plan B) approaches.

 Explain how to chain or expand such devices to implement a larger
one, for instance, how to connect several MUX_4 to obtain a MUX_16.

 Implement standard circuits targeted at a given PLD (CPLD or FPGA)
using VHDL and synthesis and simulation EDA tools. Explain the VHDL
design flow.

 Find datasheets of classic logic circuits from different technologies.

 Explain how to interface switches to encoders.

 Explain how to interface LEDs and seven-segment display to decoder
outputs.

http://digsys.upc.edu/csd/P02/P2_Design_concept_map.pdf
http://digsys.upc.edu/csd/P02/P2_Design_concept_map.pdf

Problems on digital circuits and systems

26

2.1 Using VHDL EDA tools for synthesis and simulation

Calculate the truth table of the circuit depicted in Fig. 9 using VHDL EDA tools.
This is the analysis method #4 presented in P1 and a way to discover the
concepts associated with the VHDL design flow.

Fig. 9
Example of a

combination circuit
to be analysed.

a) Understand the specifications and characteristics of VHDL synthesis

and simulation tools.

b) Organise a plan detailing the sequence of operations to reach the end
of the problem successfully.

c) Develop the solution.

d) Test the truth table using other methods of circuit analysis such as

those described in P1.

 Problem discussion

http://digsys.upc.edu/csd/P01/P1.html
http://digsys.upc.edu/csd/P01/P1.html#Circuit_K

Combinational circuits

27

2.2 Designing a MUX_8 using several architectures

The objective is to design the functionality of a MUX_8 type 74HCT151 using
VHDL synthesis and simulation EDA tools. The circuit MUX_8 is simple and so
it must be designed flat, which means a single VHDL file1 is used to describe
the complete architecture. Three plans are presented, so this problem is
completely divided into three projects. Plan, develop and test them
separately. This reference is a link to the VHDL design flow that states the
entire sequence of operations required to succeed in the design.

 Plan A. Structural, using logic equations.

 Plan B. Behavioural, using the truth table or a high-level algorithm
describing the chip’s functionality.

 Plan C1. Invent a hierarchical schematic for MUX_8 using smaller
blocks of the same kind, for instance, MUX_4 or MUX_2.

Fig. 10
MUX_8 chip symbol
derived from the
standard 74HCT151.

 Problem discussion.

1 The plan C2 proposed in P3 can be used to design hierarchical structures
using multiple-file projects, which enables the design of complex, large
circuits.

http://digsys.upc.edu/csd/P02/P2_Design_flow_flat.pdf
http://digsys.upc.edu/csd/P02/P2.html

Problems on digital circuits and systems

28

2.3 Designing a HEX_7SEG_decoder

The objective is to design the functionality of a HEX_7SEG_decoder type
74LS47 using VHDL synthesis and simulation EDA tools. The symbol and truth
table adapted from the datasheet are represented in Fig. 11. The design must
be flat with all the architecture included in a single VHDL. Two plans are
presented, so this problem is divided completely into two projects. Plan,
develop and test them separately. This reference is a link to the VHDL design
flow that states the entire sequence of operations required to succeed in the
design.

Fig. 11
Hexadecimal to
seven-segment

decoder

 Plan A. Structural, using logic equations.

 Problem discussion.

 Plan B. Behavioural, using the truth table or a high-level algorithm
describing the chip’s functionality.

 Problem discussion.

http://digsys.upc.edu/csd/P02/P2_Design_flow_flat.pdf
http://digsys.upc.edu/csd/P02/P2_T/P2_tut_BCD_7SEG_planA.html
http://digsys.upc.edu/csd/P02/P2_T/P2_tut_BCD_7SEG_planB.html

Combinational circuits

29

2.4 Designing a 10-line to 4-line priority encoder

The objective is to develop VHDL code and the final circuit for the 10-line to 4-
line priority encoder circuit (Enc_10_4) component represented in Fig. 12,
which can be interfaced to a standard 10-key numeric keypad. The circuit
must have priority decoding of the inputs to ensure that only the highest-
order data line is encoded in case several keys are pressed at the same time.
This circuit is similar to a standard combinational chip like the 74LS148. As
usual, we can plan the project in several ways, as represented in our CSD
design flow chart:
- Plan A: Structural (flat design with a single VHDL file), using the truth table

logic equations in a canonical or simplified version.
- Plan B: Behavioural (flat design with a single VHDL file), using the high-

level description of the specifications.
- Plan C2: Structural (hierarchical design with multiple VHDL files), building

the project using an architecture consisting of smaller components of the
same kind, such as Enc_4_2 or Enc_8_3.

a)

b)

Fig. 12

a) A typical 10-key
numerical keypad
(push-buttons).

b) Interface circuit that
gives the binary code
of the pressed key.
This is an MSI -
(medium scale of
integration) circuit that
can be fitted in a
simple programmable
logic device (sPLD) like
the GAL22V10 or any
other CPLD or FPGA.

The picture shows the
outputs when the
circuit is enabled and
the keys K7 and K1 are
pressed
simultaneously.

As usual in these problems, you will solve some drilling exercises on Boole’s
algebra before you attempt the design of the Enc_10_4.

http://digsys.upc.edu/csd/chips/chips.html#Classic
http://digsys.upc.edu/csd/P03/P3_Design_flow_hierarchical.pdf
http://digsys.upc.edu/csd/P03/P3_Design_flow_hierarchical.pdf
http://digsys.upc.edu/csd/chips/companies.html#Lattice

Problems on digital circuits and systems

30

Section 1: Specifications and theory
1) Find on the internet a commercial standard circuit in classic technologies

which has a similar truth table. You can start by visiting our list.
2) Fill in the truth table using the names and the variable order depicted

below using “don’t care” (“-” or “x”) terms. Gs has to be high (‘1’) when
any key is pressed. The enabled output (Eo) is high when the circuit is
enabled (Ei = ‘1’) and the keys are not pressed. How many combinations
does the truth table include?

3) Draw the sketch of a timing diagram for the circuit and describe the
outputs that are expected when different inputs are applied.

4) How long does it take to run a complete full verification of the circuit if
each input vector has a duration of Min_Pulse = 10 µs?

5) How do you generate a ‘0’ or a ‘1’ using push-buttons or switches? How
do you drive a LED for example to connect at the output Gs? Study this
circuit in Proteus to get ideas and design formulas.

6) How many minterms will D3 have? How many maxterms will D2 have?
7) Inspect the truth table or use Minilog to represent the six output functions

either as the sum of products (SoP) or the product of sums (PoS).
8) Draw the logic circuit of the output D1 using only NOR gates.

 (x·y)’= x’ + y’ , (x·y·z)’’ = (x’ + y’ + z’)’

9) If the propagation delay of a single gate of the technology used is 7.5 ns,
what is the maximum frequency of operation of the circuit in 8)?

10) Prepare other similar questions such as: invent D0 using only NAND, write
the text file in tbl format for the Minilog minimiser, etc.

Ei K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 D3 D2 D1 D0 Gs Eo Comments

http://digsys.upc.edu/csd/chips/chips.html#Classic
http://digsys.upc.edu/csd/units/Proteus/Circuit_W_real.pdsprj
http://digsys.upc.edu/csd/units/Proteus/Circuit_W_real.pdsprj

Combinational circuits

31

Section 2: Select a plan and complete the project
The following questions are related to synthesising the project Enc_10_4 into
a programmable device and testing it using EDA tools. The plan to organise
the architecture is either 11), 12) or 13). Each plan leads to a different project.

11) Architecture #1 (Plan A, structural-flat): write down the structural VHDL

code that is derived from the equations deduced in 7).
12) Architecture #2 (Plan B, behavioural): search the internet or find in books

a high-level or algorithmic VHDL code for the component in Fig. 12b. As
usual, use flow charts or schematics to translate the truth table into VHDL.

13) Architecture #3 (Plan C2, structural-hierarchical): figure out how to design
an Enc_10_4 using components like Enc_4_2 and other circuits if
necessary. How many VHDL files will the project contain? In this section,
the Ei and Eo signals must be used to facilitate block expansion.

Section 3: Develop your plan
14) Create a project for a CPLD or FPGA target chip, using EDA tools (Lattice

ispLEVER Classic or Diamond, Intel Quartus Prime or Xilinx ISE or Vivado).
Print the RTL schematic and technology schematics and discuss them.

Section 4: Test your circuit
15) Translate the timing diagram sketch represented in 3) into a VHDL test

bench file to simulate functionally the circuit using ActiveHDL, ModelSim
or ISim. Print the logic analyser timing diagram and discuss it.

16) Perform a gate-level simulation to measure the worst-case propagation
delay and calculate the encoder’s maximum frequency of operation for a
given PLD target chip.

Looking forward: this project introduces standard combinational encoder
devices. They can be compared to matrix implementations such in Problem
6.4.

Problems on digital circuits and systems

32

2.5 Designing an 8-line to 3-line priority encoder

Fig. 13 shows the internal circuit of the classic chip HEF4532B and its truth
table as specified by Philips.

Fig. 13
The HEF4532B

manufactured by
Philips. When Ein
is low the chip is
disabled. Group

select (GS) is
assessed when

there is any input
active. Enable

output Eout is
active only when

the chip is
enabled and there

is not a single
input active. The

outputs O(2..0)
generate the

binary code of the
input being active.
The highest input

prevails when
more than one

input is active at
the same time.

1) Redraw the truth table using ‘0’ and ‘1’ and explain what the circuit’s
function is, using a pair of examples. How many binary combinations does
this table have?

2) Write Eout = f(Ein, I7, ..., I0) using minterms. In addition, draw the
equivalent circuit using gates.

3) Write GS as a product of sums (PoS). How many minterms does this
function have? Draw the circuit using gates.

Write O2 as a sum of products (SoP). How many maxterms does this
function have? Write O1 and O0 as a product of sums (PoS).

4) Describe the circuit in VHDL in a behavioural or structural fashion.
5) Draw a sketch of a timing diagram and translate it into a test bench so

that the circuit can be verified using an EDA tool.

Optional questions related to further understanding the problem and
designing the project encoder_8_to_3.vhd into a programmable device:

6) Write the .tbl format file so that it can be used to obtain the PoS or the
SoP in Minilog software. Find and write down the link to a similar circuit in

http://digsys.upc.edu/csd/chips/chips.html#Classic

Combinational circuits

33

HADES that can be executed using the Java applet. Simulate the circuit in
Proteus and check if it works as expected.

7) Start a VHDL-based synthesis project and a testbench-based simulation
using EDA tools for target CPLD or FPGA programmable chips.

http://digsys.upc.edu/csd/units/Hades/hades.html

Problems on digital circuits and systems

34

2.6 A digital wind direction meter

We want to design a digital wind direction meter (wind_compass) as shown in
Fig. 14, based on a 16-position optoelectronic rotary encoder. As shown in Fig.
15, the sensor disk is coded in Gray, which was originally used instead of
binary code to prevent spurious outputs from electromechanical switches.
The objective is to develop the VHDL code and the final circuit to be
synthesised into a complex programmable device (CPLD) or a field
programmable gate array (FPGA) chip.
To promote class and cooperative group discussions, we can plan the project
in several ways, as represented in our CSD design flow chart. Each plan means
a different project and circuit realisation that is useful for comparing
solutions:
- Plan A: Structural (flat design with a single VHDL file), using logic

equations in a canonical or simplified version.
- Plan B: Behavioural (flat design with a single VHDL file), using high-level

description of the specifications.
- Plan C2: Structural (hierarchical design with multiple VHDL files), building

the project using an architecture consisting of components and signals.
Fig. 16 shows the symbol of the wind_compass chip to be implemented.

Section 1: Specifications and theory

Let us solve some initial drilling questions to learn a bit of theory and clarify
ideas, and implement the projects based on plans A and B.

1) Write the truth table of the wind_compass. The inputs have to be ordered

in this way: E, D(3..0).

2) Write the functions Y(7) and Y(14) canonically as a product of maxterms.

Fig. 14
 a) Wind compass

describing the
sixteen principal
bearings used to

measure wind
direction, b) the

wind transducer.

a) b)

http://digsys.upc.edu/csd/P03/P3_Design_flow_hierarchical.pdf
http://novalynx.com/

Combinational circuits

35

Fig. 15
The basics of the Gray
to binary rotary
encoder sensor.

3) Write the functions S(6) and S(1) canonically as a sum of minterms.

4) Let us minimise the wind_compass using Minilog and obtain the equation

output formats for SoP and PoS.

5) Write the functions S(2) and Y(13) as an SoP and draw the equivalent logic

circuit.

6) Write the functions S(0) and Y(11) as a PoS and draw the equivalent logic

circuit.

7) Write the functions S(4) and Y(5) using only NOR.

8) Write the functions S(3) and Y(10) using only NAND.

9) Draw a schematic to translate according to plan B, the

wind_compass truth table to VHDL, representing the required
signals to interface the truth table artefact.

Fig. 16
Symbol of the project
wind_compass
representing and
naming all the inputs
and outputs.
Anyone of the 23
outputs is a function of
the inputs E, D(3),
D(2), D(1), D(0) in this
order, for instance:

S(2) = f(E, D)

https://en.wikipedia.org/wiki/Rotary_encoder

Problems on digital circuits and systems

36

Fig. 17 shows an example of an internal electronic schematic for the
wind_compass when plan C2 is used. It is available here and for
experimentation. The output of Chip1 (gray_bin_converter) is connected to
both Chip2, a 1-digit 7-segment decoder (hex_7seg_decoder), and Chip 3, a
16-bit decoder (dec_4_16) with one-hot output to light a wheel of 16 LED to
display the wind direction.

Fig. 17

Internal design for
the project

wind_compass
based on plan C2.
The picture shows
Gray code “1101”,
which is “1001” in

binary and
corresponds to

the wind direction
South-East “SE”.

In the way it is
connected, the

code “0000”
corresponds to

the direction
“NNW”, and it

advances counter-
clockwise up to
the code “1111”

which is the
direction “N”.

10) Run the Proteus circuit of the circuit in Fig. 17. Print the screen results

when you input the Gray code “0101” and explain how it works.

11) Draw an example timing diagram showing the input stimulus and output

responses. Assuming that Min_Pulse = 1.26 us, how long does it take to
simulate all the circuit specifications?

Section 2: Select a plan

12) Plan A: write the VHDL code for the wind_compass to obtain the

wind_compass.vhd circuit file.
L:\CSD\P2\wind_compassA\wind_compass.vhd

http://digsys.upc.edu/csd/plan/pla/1920Q1/pla.html#pla1_1

Combinational circuits

37

13) Plan B: write the VHDL code for the wind_compass to obtain the

wind_compass.vhd circuit file.

L:\CSD\P2\wind_compassB\wind_compass.vhd

Section 3: Develop your plan

14) Synthesise the projects for the given target CPLD/FPGA chip using an EDA

from Lattice, Xilinx or Intel. Discuss using handwritten comments the RTL
and the technology schematics for plans A and B.

Section 4: Test your circuit

15) Test both projects functionally using the same VHDL test bench, for

instance, derived from the timing diagram in Question 11). Print the logic
analyser timing diagrams and explain them using handwritten comments.

 There is a former exam (1718Q1, Prob. 1) that includes a solution with
comments and simulation files for a similar project.

Optional extra questions to prepare P3 and P4 projects on VHDL
hierarchical design and timed gate-level simulations:

16) Plan C2: design the project wind_compass using a multiple-file hierarchical

approach.
L:\CSD\P3\wind_compass\(files)

17) Perform a gate-level simulation to measure the worst case propagation

delay and calculate the encoder’s maximum frequency of operation for a
given PLD target chip.

Fig. 18 shows additional details to help you to analyse the project, like the
truth table associated with a combinational circuit such as Chip1 in Fig. 17, a 4-
bit gray_bin_converter.

http://digsys.upc.es/csd/units/exams/exams.html#Exa1

Problems on digital circuits and systems

38

Fig. 18
a) Truth table of a

4-bit Gray to
binary converter

circuit.
b) The translation

of the truth table
into Minilog text

format.

Note how the 16
input

combinations do
not have to be

written necessarily
in binary

sequential.

a)

table Gray_Bin_Converter

input A3 A2 A1 A0

output B3 B2 B1 B0

" INPUTS OUTPUTS

" =========== ============

" A3 A2 A1 A0 B3 B2 B1 B0

" =========== ============

 0 0 0 0 0 0 0 0

 0 0 0 1 0 0 0 1

 0 0 1 1 0 0 1 0

 0 0 1 0 0 0 1 1

 0 1 1 0 0 1 0 0

 0 1 1 1 0 1 0 1

 0 1 0 1 0 1 1 0

 0 1 0 0 0 1 1 1

 1 1 0 0 1 0 0 0

 1 1 0 1 1 0 0 1

 1 1 1 1 1 0 1 0

 1 1 1 0 1 0 1 1

 1 0 1 0 1 1 0 0

 1 0 1 1 1 1 0 1

 1 0 0 1 1 1 1 0

 1 0 0 0 1 1 1 1

end

b)

http://digsys.upc.edu/csd/units/exams/EX1/Gray_Bin_Converter.tbl

Combinational circuits

39

P3 Arithmetic circuits: adders, multipliers, comparators, etc. and
VHDL hierarchical design (plan C2)

Objectives

After studying the content of these projects, you will be able to: corrected

 Explain how to perform basic operations like add, compare or multiply
using the radix-2 binary number system.

 Convert natural (whole) numbers between several number systems
such as binary (radix-2), decimal (radix-10) or hexadecimal (radix-16).

 Find and analyse the characteristics of classic industry standard
arithmetic chips like 74HCT283, 74LS85, 74LS181, etc.

 Write an alphanumeric message using ASCII code.

 Encode data, information or symbols in Gray, one-hot, BCD, etc.

 Explain the basics and operability of adders and comparators.

 Infer the idea of an arithmetic and logic unit (ALU) circuit.

 Infer how to design hardware multipliers.

 Infer an n-bit ripple-carry adder.

 Infer a 4-bit carry-lookahead adder and be able to compare its
characteristics with respect to the ripple-carry adder.

 Use the method of decoders (MoD) to implement logic functions.

 Use the hierarchical method of multiplexers (MoM) to implement
logic functions.

 Apply hierarchical structural design (plan C2) to implement arithmetic
circuits using VHDL.

Problems on digital circuits and systems

40

3.1 Logic functions using the methods of decoders

The following function is expressed in SoP: Here
𝒇(𝒘, 𝒙, 𝒚, 𝒛) = 𝒙′𝒚′𝒛 + 𝒙′𝒚′𝒛′ + 𝒘𝒙𝒚′ + 𝒘𝒚𝒛′ + 𝒙𝒚

a) Draw the entity’s symbol and draw the circuit diagram using logic
gates. Write the equation in VHDL.

b) Apply Boole Algebra analysis or use a computer tool like

WolframAlpha or Logic Friday to deduce the truth table and the
canonical equations sum of minterms and product of maxterms.

c) Solve the circuit by the method of decoders.

d) Invent a timing diagram to demonstrate how the circuit works, and
translate it into a VHDL test bench to perform an ActiveHDL /
ModelSim / ISim functional simulation.

http://www.wolframalpha.com/
http://sontrak.com/

Combinational circuits

41

3.2 Logic functions using the method of multiplexers

The following function is expressed in SoP:
𝒇(𝒘, 𝒙, 𝒚, 𝒛) = 𝒙′𝒚′𝒛 + 𝒙′𝒚′𝒛′ + 𝒘𝒙𝒚′ + 𝒘𝒚𝒛′ + 𝒙𝒚

a) Draw the entity’s symbol and draw the circuit diagram using logic
gates. Write the equation in VHDL.

b) Apply Boole Algebra analysis or use a computer tool like

WolframAlpha or Logic Friday to deduce the truth table and the
canonical equations sum of minterms and product of maxterms.

c) Solve the circuit by the method of multiplexers using a MUX4. How
many VHDL files are required to implement the project of this circuit?

d) Invent a timing diagram to demonstrate how the circuit works, and

translate it into a VHDL test bench to perform an ActiveHDL /
ModelSim / ISim functional simulation.

http://www.wolframalpha.com/
http://sontrak.com/

Problems on digital circuits and systems

42

3.3 Design a 1-bit full adder (flat)

Study and run the tutorial on the design of the Adder_1bit following two
different single-VHDL file (flat) plans:

A) Structural
B) Behavioural

 Problem discussion

Solve the additional questions:

a) Implement Co using only NOR gates.
b) Implement So using maxterms.
c) If a logic gate has a propagation delay of 6.5 ns, deduce the maximum

frequency of operation of your circuit.
Fig. 19

The entity of an
Adder_1bit.

http://digsys.upc.edu/csd/P03/P3_T/P3_tut_1bit_adder.html

Combinational circuits

43

3.4 Design a 1-bit full adder (structural)

Study and run the tutorial on the design of the Adder_1bit following two
different structural multiple-VHDL file (hierarchical) plans:

A) Method of decoders
B) Method of multiplexers

 Problem discussion using the method of decoders

 Problem discussion using the method of multiplexers

http://digsys.upc.edu/csd/P03/P3.html#MoD
http://digsys.upc.edu/csd/P03/P3.html#MoM

Problems on digital circuits and systems

44

3.5 Design a 1-bit comparator

Study and run the tutorial on the design of the Comp_1bit based on SoP
equations.

 Problem discussion

http://digsys.upc.edu/csd/P03/P3.html#Comp_1bit

Combinational circuits

45

3.6 Designing a MUX_8 using a multiple-file structure

The objective is to design the functionality of a MUX_8 type 74HCT151 using
VHDL synthesis and simulation EDA tools and a hierarchical strategy using
multiple VHDL files.

 Plan C2. Invent a hierarchical schematic for the MUX_8 using smaller
components of the same kind, for instance, MUX_4 or and MUX_2.

Fig. 20
MUX_8 chip symbol
derived from the
standard 74HCT151.

 Problem discussion

http://digsys.upc.edu/csd/P03/P3_T/MUX_8/MUX_8_C2.html

Problems on digital circuits and systems

46

3.7 4-bit ripple adder

Follow and run the tutorial on the Adder_4bit based on a ripple carry plan.

 Problem discussion

http://digsys.upc.edu/csd/P03/P3_T/P3_tut_4bit_adder.html

Combinational circuits

47

3.8 8-bit binary adder using 4-bit carry-look ahead adders

Project:
a) Write the VHDL code of the complete 4-bit carry lookahead adder

(Adder_1bit.vhd, Adder_4bit.vhd, Carry_generator.vhd).

Fig. 21
The idea of a 4-bit carry-
lookahead adder (chip
74HCT283), as
explained in: Introduction
to digital systems,
Ercegovac, M., Lang, T.,
Moreno, J. H., John
Wiley & Sons, 1999,
web.

Development of the 4-bit carry-lookahead adder.
b) Start a project using an EDA tool and synthesise the circuit in a given

target chip CPLD or FPGA. Print the RTL view and comment it.
Test the 4-bit carry-lookahead adder.

c) Start a VHDL simulator EDA tool and run a test bench to verify the unit
under test applying some 4-bit operands. Print the timing diagram and
add notes and explanations.

http://pdf1.alldatasheet.com/datasheet-pdf/view/15581/PHILIPS/74HCT283.html
http://web.cs.ucla.edu/Logic_Design/

Problems on digital circuits and systems

48

3.9 Designing a 6-bit comparator using VHDL

The idea is to develop and implement an expandable Comp_6bit component.
Fig. 22 shows the entity’s symbol and the proposed internal architecture for
the Plan C2 consisting of a structural hierarchical planning.

Fig. 22
a) Entity for the

6-bit expandable
comparator.

b) Example of an
internal

architecture for
the Comp_6bit

based on a
structure of

smaller elements
of the same kind

(Plan C2).

a) b)

Fig. 23

Truth table for the
cascadable 3-bit

comparator
Comp_3bit which

is used as a
building

component in the
Oomp_6bit.

.

A[2..0] B[2..0] Gi Ei Li GT EQ LT

A > B x x x 1 0 0 A is greater than B

A < B x x x 0 0 1 A is lesser than B

 1 0 0 1 0 0 Gi input decides

A = B 0 1 0 0 1 0 Ei input decides

 0 0 1 0 0 1 Li input decides

Plan C2: Implementation of a structural design in a CPLD or a FPGA.

a) Explain the design flow you will follow to produce your circuit using
Lattice ispLEVER Classic / Altera Quartus II / Xilinx ISE.

b) Draw a structured hierarchical design as in Fig. 22b using several
components. For instance, Fig. 23 shows the truth table for a 3-bit
cascadable comparator.

c) Implement the elemental Comp_1bit using the logic equations derived
from Minilog.exe (single output mode, sum of products, table output
format). Verify your equations using WolframAlpha. This section is
solved as a tutorial in the web (Comp_1bit).

d) Create a multiple-file VHDL-based project using EDA tools for a CPLD
target chip, for example Lattice ispMACH4128V TQFP100, or the Intel-
Altera MAX EPM7128SLC84-7, or the Xilinx CoolRunner II XC2C256-
TQ144 - 7. Print and comment the RTL and technology views of the
synthesised circuit, so that it can be compared to the initial block
diagram proposed in Fig. 22b.

http://digsys.upc.edu/csd/P03/P3_Design_flow_hierarchical.pdf
http://digsys.upc.edu/csd/P03/Comp_1bit/P3_tut_Comp_1bit.html

Combinational circuits

49

e) Test and simulate your design using the ActiveHDL / ModelSim / ISim
simulators by means of a VHDL test bench.
(Optional)

f) Assign pins and generate the output configurations files if the circuit
has to be prototyped in a development board (Lattice HWD-LC4128V,
Altera UP2 or Xilinx CoolRunner-II CPLD Starter Board).

g) Write down a report to document your design using our quality
standards and templates.

(Optional)
There are other ways to describe the same circuit, which are not in the scope
of this introductory CSD course. Sometimes, the single-file behavioural version
of the arithmetic circuit is not that difficult to write.
Plan B: Implementation of a behavioural design (flat design, single VHDL file)

h) Draw the truth table and a timing diagram sketch for the Comp_6bit
circuit.

i) Write down the high level or behavioural VHDL code directly as a
single block as in Fig. 22a planning writing first an algorithm or a
flowchart to translate the circuit’s truth table.

j) Create a single-file VHDL project using the EDA tools to synthesise a
circuit for a simple programmable logic device (sPLD) GAL22V10 (24
pins) or a CPLD or a FPGA chip. Print and comment the RTL and the
technology views of the synthesised circuits.

k) Test and simulate your design using Proteus and its EasyHDL scripting
language (in case of a sPLD). In case of a target chip CPLD or FPGA, use
ActiveHDL / ModelSim / ISim simulators by means of a VHDL test
bench, thus, translating the timing diagram sketch into VHDL to apply
input stimulus. Print the timing diagrams and comment them.

Problems on digital circuits and systems

50

3.10 Counting occupied parking slots (32-bit ones’ counter)

This project aims to represent in 7-segment displays the number of occupied
parking slots. Each slot has installed an ultrasonic presence sensor which gives
a ‘1’ when occupied. Thus, the first idea here for planning the entity
Parking_occupancy in Fig. 24 is to consider components such as a
Ones_counter_32bit where for example an input vector such as D = “1001
0011 1110 1111 1000 1111 1010 1110” will produce an output K = (010101)2 =
(21)10 ; a Converter_bin_BCD_6bit where for example an input such as K =
(010101)2 will generate and output T = “0010”, U = “0001” ; and a pair of
HEX_7seg_decoder to drive the 7-segment displays.

Fig. 24
Example of a

parking
occupancy
monitor to

calculate the
number of

occupied parking
slots.

In this example it

is represented the
number 21,

meaning this
number of

detected cars in
any position in

the parking.

VCC = 5 V
.

a) Draw and explain the internal architecture of the parking occupancy
circuit based on components and representing some examples of the
components truth tables.

b) The HEX_7seg_decoder has active-low outputs to drive a common-
anode display and its technology is LS-TTL with the characteristics
represented in the table. Calculate the value of the limiting resistor R1
in the worst case scenario if each segment must be biased with 15 mA
when lighting.

Combinational circuits

51

c) The Converter_bin_BCD_6bit is used to translate 6-bit radix-2
numbers to 2 BCD digits. Assuming the circuit is based on equations
PoS (plan A) and implemented in LS-TTL technology where each gate
has propagation delays as indicated in the table, calculate the
maximum speed of computing.

d) Invent the architecture of the ones_counter_32bit as a hierarchy of
components (plan C2). For instance, Fig. 25 represents the schematic
of a ones_counter_8bit. How many VHDL files will include this project?
Check that your circuit works applying some input vectors.

a)

b)

Fig. 25
a) Example of building
a ones_counter_8bit
using smaller
components like
ones_counter_4bit and
Adder_4bit.

b) This is the truth table
of a ones_counter_4bit

 Problem discussion including the 8-bit and the 4-bit ones’ counter and a
commented solution.

http://digsys.upc.edu/csd/P04/P4_T/ones_counter_8bit.html
http://digsys.upc.edu/csd/units/exams/exams.html#1819Q1

Problems on digital circuits and systems

52

3.11 1-bit subtractor

We want to implement a circuit for subtracting 8-bit binary numbers as
represented in Fig. 26.

Fig. 26
The entity of an

Onebit_subtractor

D = A – B

0 ≤ A, B ≤ 2n – 1

A B

The strategy is to use a chain of simple 1-bit subtractors instead of the typical
1-bit adders and the two’s complement convention. Thus, the circuit will work
only with positive integers. The Fig. 27 shows the building block.

Fig. 27
The entity of an

Onebit_subtractor

0 − 0 → 0

0 − 1 → 1, borrow 1

1 − 0 → 1

1 − 1 → 0

So, we can chain many 1-bit subtractor connecting the “borrows” in the same
way we connect the “carry” when adding:
 * * * * (starred columns are borrowed from)

 1 1 1 0 1 1 1 0 A(7..0) (238)

 − 1 0 1 1 1 - B(7..0) - (23)

 ---------------- ------- ------

= 1 1 0 1 0 1 1 1 D(7..0) (215)

The full 1-bit subtractor (SUB_1) have the following truth table: D = f(A, B, Bin)
= ∑m(1, 2, 4, 7); Bout = g(A, B, Bin) = ∏M(0, 4, 5, 6)

1. Representing the truth table by means of equations, implement the 1-
bit subtractor using only NAND gates. Write the equations in VHDL.

2. Write the code for the 1-bit subtractor in VHDL using a behavioural
approach.

3. Draw the schematic of the 8-bit ripple subtractor (SUB_8) and
describe it in VHDL using components.

4. Implement the logic circuit of a pair of flags or indicators to detect
special events like:

 A zero result D = A – B = 0

 A negative number D < 0 (A<B)

5. Draw a sketch of a timing diagram and write it as a VHDL test bench to
test your design. Try at least three operations:

A = 230, B = 45; A = 187, B = 177; A = 177, B = 187

Combinational circuits

53

P4 Arithmetic circuits for 2C integer numbers and gate-level
simulations for propagation delay measurements

Objectives

After studying the content of these projects, you will be able to: corrected

 Use standard arithmetic blocks for integer numbers based on the
two’s complement (2C) convention: subtractors, adders, comparators,
multipliers, etc.

 Solve arithmetic operations for integers in two’s complement format
(2C).

 Explain the range of an N-bit integer number in 2C and the meaning of
an overflow operation result.

 Design combinational circuits in a hierarchical way using multiple
combinational circuits as components (plan C2).

 Explain why a XOR gate can be considered a programmable gate that
can be both an inverter or a buffer.

 Perform VHDL gate-level simulations to calculate propagation delays
and the maximum speed of computation of a given circuit.

 Discuss the main features of the electronic technology behind a CPLD
or FPGA.

 Implement circuits in target PLD chips (CPLD or FPGA) populating the
laboratory training boards from Xilinx, Intel-Altera or Lattice
Semiconductor.

 Design circuits that can operate on different types of data, for
instance, natural and integer numbers.

Problems on digital circuits and systems

54

4.1 Addition and subtraction in two’s complement

1. Draw the symbol and the internal schematic of a 6-bit two’s complement
adder/subtractor and determine the range of the operants and the result.
Explain how the overflow (OV) flag works.

2. Perform the following operations in binary using the two’s complement
(2C) 6-bit adder/subtractor from previous section 1). Check the result and
deduce the Z and OV flags.

a) (+26)10 + (101010)2C

b) (101010)2C - (-21)10

c) (+18)10 + (101110)2C

d) (-31)10 - (010110)2C

3. Represent the previous operations in a timing diagram and translate it
(only the stimulus section) to a VHDL test bench using a constant
Min_Pulse = 7.5 µs.

4. Determine the maximum speed of operation of the 6-bit 2C
adder/subtractor if synthesised in a Xilinx technology Coolrunner CX2C256
CPLD that has the propagation delays shown below. Justify your
calculations.

 Problem discussion

http://digsys.upc.edu/csd/units/exams/EX1/1718Q1_EX1_exemple_solution.pdf

Combinational circuits

55

4.2 Designing an 8-bit adder/subtractor for integer numbers

Solve these basic addition and subtraction operations for integer numbers in
two’s complement (2C) and 8 bits.

a) Indicate the result and the value of the overflow flag after performing
the operations:

o Addition: (-100) + (-15)
o Subtraction: (+100) - (+6)
o Subtraction: (+6) - (-127)
o Addition: (-127) + (-100)

b) Draw the above operations, which are also examples of the circuit’s
truth table, in a timing diagram. How long is the truth table?

Fig. 28
The entity of an
circuit to add and
subtract 8-bit
integer numbers.

Propose an internal architecture based on components and signals (plan C2)
for the entity represented in Fig. 28. Follow the indications in P3 and P4
dedicated to arithmetic circuits.

c) How many VHDL files your circuit contains? Name them all.
d) Translate the top circuit schematics to VHDL and name it

Int_add_subt_8bit.vhd. Find also the VHDL files for the components.

Development of the 8-bit integer adder/subtractor.

e) Start a project using an EDA tool and synthesise the circuit in a given
target chip CPLD or FPGA.

f) Print the RTL view and the technology schematic and comment it.

Test the 8-bit adder/subtractor.

g) Start a VHDL simulator EDA tool and run a test bench to verify the unit
under test (UUT) applying some 8-bit integers (positive and negative
numbers) like the ones in a). Print the timing diagram and add notes
and explanations to analyse the result.

h) Measure the maximum speed of operation (or computation or data
processing) of the circuit using a gate-level simulation. Print the timing
diagram explaining how such measurements are made. Explain the
data from the time analyser spreadsheet.

i) Can you compare result when the 8-bit adder/subtractor is solved
using 4-bit carry-lookahead instead of 4-bit ripple-carry adders?

http://digsys.upc.edu/csd/P03/P3.html
http://digsys.upc.edu/csd/P04/P4.html

Problems on digital circuits and systems

56

4.3 Designing a 10-bit comparator for radix-2 and 2C numbers

The idea is to design and implement a 10-bit comparator for both, radix-2
(natural numbers including the zero, also named whole numbers) and two’s
complemented (2C) numbers (integers, which are positive or negative). The
entity symbol is represented in Fig. 29 and shows the data select input N used
to set the input data type in operation: N = ‘1’ integers, N = ‘0’ radix-2. Let us
name this project Selectable_comp_10bit.
The hierarchical multiple-VHDL file design strategy will follow the plan C2
studied in P3 based on using the component Comp_10bit that was inferred in
the previous problem 3.9 for natural numbers in radix-2.
A good idea is to organise the project in several design phases:

A. Study the previous problem 4.3 on radix-2 comparators.
B. Study how to implement a comparison of two integers. Which may be

the algorithm, or put in another way: how to use Comp_10bit to work
with integers?

C. Study how to combine the previous designs into the final
Selectable_comp_10bit chip.

Fig. 29
The entity of a 10-
bit comparator that
works with natural

or integer
numbers.

1. Discuss the output of the circuit for several radix-2 numbers and for
several 2C integer numbers. Draw the circuit’s truth table and a timing
diagram sketch.

2. Discuss how to obtain a plan for this circuit based on the Comp_1bit
component and other circuit.

3. Translate your schematic to VHDL and run the synthesis project for a
given target CPLD or FGPA chip. View and comment the RTL and the
technology schematics.

4. Verify the circuit applying several vectors using a VHDL testbench.
5. Measurement of the maximum speed of processing.

http://digsys.upc.edu/csd/P04/Ideas_comp_2c_8bit.pdf

Combinational circuits

57

4.4 Performing gate-level simulations and propagation time
measurements

This project takes as example circuits for performing gate-level or timed
simulations the Adder_1bit and the Int_add_subt_8bit already developed
earlier. Here the idea is to discuss which circuit is faster and how a circuit can
have an optimised topology in order to be faster.

a) Perform a gate level simulation in an Adder_1bit structural circuit like
the one represented in Fig. 30. More architectures can be found in the
1-bit full adder tutorial. Find the maximum speed of computation of
this circuit for a given target PLD chip.

b) Perform a gate level simulation in an Int_add_subt_8bit build using

ripple carry techniques. Find the maximum speed of computation of
this circuit for a given target PLD chip.

c) Perform a gate level simulation in an Int_add_subt_8bit build using
carry-lookahead techniques. Find the maximum speed of
computation of this circuit for a given target PLD chip.

d) Compare results for the same Int_add_subt_8bit when the target chip
is a CPLD or a FPGA.

Fig. 30
Structural
Adder_1bit
consisting of several
levels of gates.

http://digsys.upc.edu/csd/P03/P3_T/P3_tut_1bit_adder.html

Problems on digital circuits and systems

58

4.5 How to design an 8-bit multiplier for 2C integer numbers?

This is a complex project which go further beyond the objectives of CSD
course. However, it has its interest in showing complex circuits can be
organised systematically using our tools and VHDL plan C2.

a) Run simulations of the circuit in Fig. 31 using the multiplier available in
Proteus. Determine the range of the numbers and the operation that
can be handled using 8-bit 2C integers. Draw the circuit’s truth table
for several example calculations.

b) Study how the architecture of a 8-bit hardware multiplier for natural
numbers in radix-2 (Mult_8bit) is organised when using 1-bit
multiplier cells (Mult_1bit).

e) Discuss the plan for building the 2C integer multiplier.
f) Study if there any alternative to our Plan C2 for drawing this huge

architecture in VHDL (generics, scalable circuits, plan B, numeric
library, etc.)

g) Browse the web to find example VHDL code which can be copied and
adapted to our circuits. 1) Mult_8bit, 2) Selectable_mult_8bit.

Fig. 31
Example of an 8-

bit multiplier for
2C integers.

The circuit has a
control signal N
to select which

data operate:
signed or

unsigned integer.
This is the link to

the circuit.

http://digsys.upc.edu/csd/P04/Mult_2C/Mult_8bit.pdsprj
http://digsys.upc.edu/csd/P04/Mult_2C/Mult_2C_8bit.pdsprj

Combinational circuits

59

60

2

Sequential systems

61

Sequential systems

Problems on digital circuits and systems

62

P5 1-bit memory cells: latches and flip-flops
Objectives

After studying the content of these problems, you will be able to: corrected

 Implement the basic RS latch using NOR or NAND gates.

 Deduce a data flip-flop (D-FF) from an RS latch.

 Explain the concept of a clear direct (CD) and set direct (SD).

 Explain the concept of CLK signal.

 Describe the specifications of flip-flops (RS_FF, JK_FF, D_FF and T_FF):
function table, state diagram, timing diagram and symbol.

 Analyse simple asynchronous circuits based on latches or flip-flops
(for instance, the 7493 chip).

 Explain the idea of sampling input values (level-sensitive signals) and
synchronicity.

 Explain the concepts of time resolution and glitch in a synchronous
digital system.

 Analyse simple synchronous circuits based on flip-flops or latches.

 Debounce and synchronise digital signals from pushbuttons and
switches.

 Find characteristics of classic (LS, HCT, etc.) 1-bit memory cell chips.

 Define the CLK to output delay time (tCO).

 Develop projects in VHDL based on RS latches and flip-flops.

 Explain the VHDL description of a D_FF.

 Run functional and gate-level simulations to test and verify the
performance of circuits based on flip-flops and latches.

 Connect a bank of latches or flip-flops to build n-bit memory cells.

 Implement logic functions using the method of ROM memories.

 Explain the initial idea of a finite state machine applied on flip-flops.

Project classification:

Sequential systems

63

5.1 Designing and using an RS latch. Deducing an RS_FF.

Invent an RS latch using NOR or NAND gates. This is a structural plan A based
on logic equations. Run this tutorial to develop and simulate the circuit.
Use the RS latch to debounce a SPDT switch.
Follow this tutorial on how to implement an RS_FF from an RS latch using logic
gates (plan A). However, the topic is theoretical or conceptual, to comprehend
the functionality of the special CLK and CD signals, because the practical
implementation of flip-flops in VHDL will be by means of behavioural plan B.
These are tutorials and projects on D_FF, T_FF and JK_FF respectively.

Fig. 32
Symbol and function
table of an RS latch.

http://digsys.upc.edu/csd/P05/P5_T/RS_latch/RS_latch.html
http://digsys.upc.edu/csd/P05/P5_T/D_FF/D_FF_ideas.pdf
http://digsys.upc.edu/csd/P05/P5_T/D_FF/D_FF.html
http://digsys.upc.edu/csd/P05/P5_T/T_FF/T_FF.html
http://digsys.upc.edu/csd/P05/P5.html

Problems on digital circuits and systems

64

5.2 Data flip-flop (D_FF)

Follow this tutorial on how to implement a D_FF in VHDL.

1. Specifications (symbol, function table and example timing diagram).
Find a commercial chip of this kind.

2. Plan B: state diagram. Flow chart to describe the state diagram,

function table or algorithm. Write the D_FF.vhd from the flow chart
file.

3. Run a project using an EDA synthesis tool for a CPLD or FPGA target
chip. Print and discuss the RTL and the technology schematics.

4. Simulate the circuit using a VHDL test bench and discuss the results.

5. Use a gate-level simulation to measure the maximum speed of
operation. Run the timing analyser and compare results.

Fig. 33

Symbol and
function table of a
data type flip-flop

(D_FF).

http://digsys.upc.edu/csd/P05/P5_T/D_FF/D_FF.html

Sequential systems

65

5.3 Analysis of a synchronous circuit

Analyse the circuit in Fig. 34, by drawing a timing diagram of the outputs

Q(3..0). Indicate a possible application of this circuit. How many VHDL

files will be required to develop the project?

 Some insight into the solution of the problem can be found here.

Fig. 34
Circuit based
on data flip-
flops (D_FF).

http://digsys.upc.edu/csd/units/exams/proj/Proj_5_3_Solution_ideas.jpg

Problems on digital circuits and systems

66

5.4 JK_FF and analysis of an asynchronous circuit

Component analysis
a) Analyse the behaviour of the JK flip-flop in Fig. 35 and represent the

output Q in a timing diagram like the one represented in Fig. 36.
Fig. 35

Symbol and
function table of a

synchronous JK
flip-flop.

JK-FF

J

CD

CLK

Q

Q
+

JK

00

11

Q

Q´

01 0
10 1

K

Reset

state

Set state

J = 1

K = 1 K = 0

J = 0

(Q = 0)

(Q = 1)

Fig. 36

Example input
waveforms.

CLK

CD

J

Q

K

Follow the tutorial P5 and study some theory on flip-flops and how they work.
What could its internal structure be (derived from gates, using components
like RS_FF and extra logic or using a standard FSM architecture based on a
D_FF state register)? Why do we prefer an FSM architecture?

b) How can a toggle T flip-flop (T_FF) be designed using a JK flip-flop

component? Explain the circuit.
c) Explain the internal architecture of the JK_FF circuit if it is designed as a

finite state machine (FSM) that has the state diagram shown in Fig. 35.
Design the logic of the CC1 and CC2 circuits using behavioural plan B as in
the tutorial T_FF.

d) Explain the circuit required to implement the data type flip-flop (D_FF) in
the state register from the initial RS_latch cell based on only-NOR gates.
(See these class notes).

Asynchronous circuit analysis

http://digsys.upc.edu/csd/P05/P5_T/T_FF/T_FF.html
http://digsys.upc.edu/csd/P05/P5_T/D_FF/D_FF_ideas.pdf

Sequential systems

67

e) Deduce the outputs of the circuit represented in Fig. 37. This is an
example of an asynchronous circuit that can serve to demonstrate how
complicated and unreliable the asynchronous design is compared to the
synchronous canonical design based on FSM, which is presented in the
next P6.

Fig. 37
Example of an
asynchronous
circuit.

NOTE: to deduce the vector output Q(2..0), you must first draw the timing
diagram waveforms using this procedure.

Circuit simulation in Proteus
f) You can verify your answer by comparing it to the Proteus circuit that can

be obtained by modifying a similar circuit such as this one in Problem 5.8.

http://digsys.upc.edu/csd/P05/P5_T/Async_counter/Asynchronous_counter.html#procedure
http://digsys.upc.edu/ed/CSD/units/P5_T/Async_counter/asynchronous_circuit.pdsprj

Problems on digital circuits and systems

68

Circuit development in VHDL and testing
Development and testing means that now the circuit in Fig. 37 is a
conventional project, called for instance async.vhd, which must be planned
carefully in VHDL from bottom to top. For instance:

1. Solve and test completely the JK_FF specified in P5 so that you get a
JK_FF.vhd file that can be used in this project as a component.

2. Now that you know how the circuit works, you can write in VHDL the
asynchronous circuit in Fig. 37, synthesise it and print the RTL view. Be
aware that the “number of registers” in the project’s summary
spreadsheet must be “3”.

3. Use a VHDL test bench to demonstrate that the timing diagram looks
like that obtained in Proteus or in the analysis above.

Fig. 38
Example of the
fully annotated

circuit to be
translated to

VHDL. It can be
called async.vhd

Canonical circuit, a P6 project
g) Design an FSM that generates the same output Q(2..0). It will be a better

replacement of the asynchronous circuit in Fig. 37. Why?

http://digsys.upc.edu/csd/P05/P5.html

Sequential systems

69

5.5 Analysis of a synchronous circuit

1. Analyse the circuit in Fig. 39 and, draw a timing diagram of the outputs
Q(3..0) that apply to this procedure. How many states does this circuit have?
Which is the output value Q(3..0) for each state?
2. Verify your results by simulating the circuit in Proteus. The schematic in Fig.
39 can be captured by modifying a similar circuit such as this one in Problem
5.8.

Fig. 39
Circuit based on
T_FF.

http://digsys.upc.edu/csd/P05/P5_T/Async_counter/Asynchronous_counter.html#procedure
http://digsys.upc.edu/ed/CSD/units/P5_T/Async_counter/asynchronous_circuit.pdsprj

Problems on digital circuits and systems

70

5.6 Design a toggle flip-flop (T_FF) using the FSM strategy

Design a T_FF using the FSM strategy. Follow this tutorial.
1. Specifications (symbol, function table and example timing diagram).

Find a commercial chip of this kind, for instance a JK_FF with T = J = K.
2. Plan B: FSM strategy. Draw the state diagram. Draw the state register,

the truth table of CC1 and CC2. Translate the truth tables of CC1 and
CC2 into a flow chart (behavioural description). Write the T_FF.vhd.

3. Run a project using an EDA synthesis tool for a CPLD or FPGA target
chip. Print and discuss the RTL and the technology schematics.

4. Simulate the circuit using a VHDL test bench and discuss the results.
5. Measure the maximum speed of operation using a gate-level

simulation. Run the timer analyser tool and compare results.

Fig. 40

Symbol and
function table of a

toggle type flip-flop
(T_FF).

http://digsys.upc.edu/csd/P05/P5_T/T_FF/T_FF.html

Sequential systems

71

5.7 Design a JK flip-flop using the FSM strategy

Design a JK_FF using the FSM strategy. Follow this project
organisation.

1. Specifications (symbol, function table and example timing diagram).
Find a commercial chip of this kind.

2. Plan B: FSM strategy. Draw the state diagram. Draw the state register,
the truth table of CC1 and CC2. Translate the truth tables of CC1 and
CC2 into a flow chart (behavioural description). Write the JK_FF.vhd.

3. Run a project using an EDA synthesis tool for a CPLD or FPGA target
chip. Print and discuss the RTL and the technology schematics.

4. Simulate the circuit using a VHDL test bench and discuss the results.
5. Measure the maximum speed of operation using a gate-level

simulation. Run the timer analyser tool and compare results.

Fig. 41
Symbol and
function table of a
JK flip-flop
(JK_FF).

http://digsys.upc.edu/csd/P05/P5_T/T_FF/T_FF.html

Problems on digital circuits and systems

72

5.8 Analysis of an asynchronous counter (type 7493)

Analyse the circuit in Fig. 43 and represent the waveforms in a diagram like
the one represented in Fig. 44. Be aware that the circuit is asynchronous
because chips’ CLK inputs are not connected to the same signal. Remember
that a T-type flip-flop behaves as indicated in Fig. 42.

Fig. 42
Symbol and

function table of a
synchronous

toggle T-type flip-
flop.

Fig. 43

This is the clocked
circuit to be

analysed. Here is
a Proteus version
of this circuit that

can be simulated.

Fig. 44
Output

waveforms
to be

deduced
from the

circuit in Fig.
43.

What is the circuit’s function? What will the circuit be used for? What is the
circuit’s main problem, so that it must be rejected for precision applications?

 A VHDL design tutorial of a similar circuit can be found here.

http://digsys.upc.edu/ed/CSD/units/P5_T/T_FF/T_FF.html
http://digsys.upc.edu/ed/CSD/units/P5_T/Async_counter/asynchronous_circuit.pdsprj
http://digsys.upc.edu/csd/P05/P5_T/Async_counter/Asynchronous_counter.html

Sequential systems

73

5.9 Analysis of an asynchronous circuit based on T_FF

Analyse the output waveforms and deduce the binary codes K(3..0) that
generate the asynchronous circuit in Fig. 45 based on toggle flip-flops (T_FF).

Fig. 45
Diagram and
function table of a
T_FF and example
of an
asynchronous
circuit.

Fig. 46
Output waveforms
to be deduced
from the circuit in
Fig. 45.

 A tutorial solution of the problem can be consulted here.

Optionally, the project can be continued developing and testing the circuit in
VHDL.

http://digsys.upc.edu/csd/units/exams/proj/Prob_5.9_commented_solution.pdf

Problems on digital circuits and systems

74

5.10 Design a combinational circuit using the method of ROM
memories

Tutorial at this link.

http://digsys.upc.edu/csd/units/ROM/ROM.html

Sequential systems

75

5.11 Design a HEX_7seg using the method of ROM memories

Tutorial at this link.

http://digsys.upc.edu/csd/units/ROM/ROM.html

Problems on digital circuits and systems

76

P6 Finite State Machines (FSM)

Objectives

After studying the content of these projects, you will be able to: corrected

 Discuss the standard architecture of a finite state machine (FSM):
current and next states, the state register, the output logic (CC2) and
state logic (CC1) combinational circuits.

 Describe the truth table of the output logic circuit and find its
behavioural interpretation (flow chart or algorithmic state machine
[ASM] chart).

 Describe the truth table of the state logic circuit and find its
behavioural interpretation (flow chart).

 Explain the specifications of the system: symbol, inputs and outputs,
number of states and state transitions, state encoding (binary
sequential, Gray, one-hot, etc.), state register (number of D_FF used
in the design).

 Develop the FSM in a single (flat) VHDL file.

 Run functional and gate-level simulations to test and verify the FSM
performance and characterisation.

 Design simple FSM using the CSD systematic methodology: from the
specifications to the final verification and prototyping. For instance:
traffic light sequencers, light control systems, matrix keypad encoders,
step motor controller, push-button debouncer and synchroniser, etc.

Sequential systems

77

6.1 Controlling the classroom luminaires

This is the light control (Light_Control) tutorial to introduce the FSM basic
concepts.

 A complete tutorial can be found here.

http://digsys.upc.edu/csd/P06/P6_T/Light/Light.html

Problems on digital circuits and systems

78

6.2 Invent a bicycle torch

This is the lamp control (Lamp_Control) tutorial to introduce the FSM basic
concepts.

 A complete tutorial can be found here.

6.3 Debouncing circuit

To get rid of signal electrical noise when using switches and push-buttons.

 A complete tutorial can be found here.

http://digsys.upc.edu/csd/P06/P6_T/Lamp/Lamp.html
http://digsys.upc.edu/csd/P06/P6_T/Debouncing/Debouncing_filter.html

Sequential systems

79

6.4 16-key matrix encoder

To save cables and simplify the interface for large keyboards.

 A complete tutorial can be found here.

http://digsys.upc.edu/csd/P06/P6.html

Problems on digital circuits and systems

80

6.5 Water tank controller

a. Study the specifications. We want to design a water tank controller
(Water_tank_controller) as an FSM that can drive two pumps
independently, as represented in Fig. 47. The tank has level sensors D1,
D2, and D3 attached to the wall, so that a ‘1’ is generated when the sensor
is sunk into water. The controller works as follows: when it is empty,
below D1, both pumps work simultaneously; when the water level is
above D2 pump P1 stops; when the water is above D3, meaning that the
tank is full, pump P2 stops; and finally, the pumps do not switch on until
the water level is again below D1.

b. Plan: FSM. Draw the state diagram if, in addition to controlling the water
level, we also want to indicate in a LED column the current level of the
water in the tank.

c. Plan: adapt the general FSM architecture to this problem and draw the
state register based on D_FF. Deduce how many D_FF are required if you
are coding in binary sequential or in one-hot.

d. Plan: write the truth table of CC1 and CC2 and their equivalent
behavioural interpretations in flowcharts.

e. Development: write the VHDL file Water_tank_controller.vhd by
translating the flowcharts and the state register. Run a project using an
EDA synthesis tool for a CPLD or FPGA target chip. Print and discuss the
RTL and the technology schematics. The CLK oscillator is 1 MHz.

f. Test: simulate the circuit using a VHDL test bench and discuss the results.
Measure the maximum CLK frequency that can be applied to your design
considering a target chip from Lattice Semiconductor (ispMach4128V
TQFP100), Intel (Cyclone IV EP4CE115F29C7), or Xilinx (Spartan-3E
XC3S500E-FG320).

Fig. 47
Diagram of the

water tank
installation.

This link is an
example of a

state diagram.

http://digsys.upc.edu/csd/units/exams/proj/Prob_6_6_State_diagram_proposal.jpg

Sequential systems

81

g. Additional features added to the basic prototype. The user wanted to add
an extra circuit to translate the LED column code into a 7-segment display.
Thus, an additional combinational circuit CC3 is required to meet this new
specification. Let us solve the problem using the ROM method for
implementing logic functions. The wiring in Fig. 48 shows the naming
conventions for the vector HEX0(6..0) common anode in the DE2-115
board user guide page 36. Discuss the size [2mx n] of the ROM, its content
and synthesise the circuit.

Fig. 48
Enhancement with a 7-
segment display.

http://digsys.upc.edu/ed/components/programables/DE2_115_User_manual_2013.pdf
http://digsys.upc.edu/ed/components/programables/DE2_115_User_manual_2013.pdf
http://digsys.upc.edu/csd/P05/P5_T/RS_latch/memory_chip.jpg

Problems on digital circuits and systems

82

6.6 Traffic light controller

This problem is discussed in the tutorial.

http://digsys.upc.edu/csd/P06/P6_T/TLC/P6.html

Sequential systems

83

6.7 Stepper motor controller

Reinvent project 0 using VHDL techniques as a canonical FSM.

Problems on digital circuits and systems

84

6.8 7-segment digit sequencer

We want to design a simple driver to shown a sequence of movement,
clockwise and counter-clockwise, in a single 7-segment display. Fig. 49
represents the schematic diagram of the application. The circuit components
are: (1) a clock to produce a rectangular wave with a given frequency, let us
take for instance 5 Hz; (2) the digital system named sequencer and (3) the 7-
segment display (common cathode) with its current-limiting resistors.

Fig. 49
a) Block

diagram of the
circuit.
b) Digit

segments and
position when

idle. c)
Sequence of

switching LED
segments for

UD_L = ‘1’
(up).

a)

b)

c)

The system has to work as specified in Fig. 49c, depending on the logic levels
of the synchronous input signals: UD_L (Up –active high / Down –active low)
and ST (start/stop). A start pulse (ST) activates the sequence of LED lighting
that never ends until another pulse ST is applied and the sequence reached
the last state. Because of the requirement that the sequence must end (for
example when going UP reaching the state Blank) before stopping (going Idle)
if another ST pulse is detected, the design must include a 1-bit memory cell
such as an RS_Latch or an RS_FF and the FSM that generate the sequence and
controls the system. Therefore, this will be a plan C2 system composed of a
top design (sequencer) and some components.

1. Deduce a circuit for solving this problem. This is an initial discussion.

http://digsys.upc.edu/csd/units/exams/proj/Prob_6.7_discussion.jpg

Sequential systems

85

2. Particularise the internal FSM component architecture to this
problem, naming and connecting all the inputs and outputs. How
many D_FF of memory are used in this problem if coding the state
machine in one-hot?

3. Infer and draw the circuit’s state diagram. Annotate all the state
transitions and outputs.

4. Sketch a timing diagram showing the main operations. In addition to
the ports, include as well internal signals like STB in the discussion.

5. Draw the state register if coding the machine in binary sequential.
6. Write the CC2 truth table to obtain the outputs of the circuit and its

flow chart.
7. Design the CC1 truth table to obtain the next state to go and its flow

chart.
------------------------- Development and test ----------------

8. Write the VHDL files (this is a plan C2 design) and run the EDA project
to synthesise the circuit and obtain results. Inspect the RTL and verify
that it looks like your schematic. Check the number of D_FF, print and
comment the schematics.

9. Write a VHDL test bench and run the EDA simulation tool to verify
your design.

10. The target chip is the ispMACH4128 which has DFF with a tCO = 2.7 ns
and logic gates with a tPD = 2.7 ns. Which may be a good estimation of
the maximum frequency of operation? Explain your answer.

Extra (P8 content on CLK generators: counters and frequency dividers using
the plan Y)

11. Design a circuit to produce the 5 Hz square wave from a 50 MHz
quartz crystal oscillator and deduce the number of D_FF that will
contain.

http://digsys.upc.edu/csd/P08/P8.html

Problems on digital circuits and systems

86

P7 Standard counters and registers

Objectives

After studying the content of these projects, you will be able to: corrected

 Explain the meaning and use of signals such CE, LD, TC, Q, Din, etc.

 Design synchronous canonical standard counters such as FSM.

 Design any kind of counter selecting one or several of the following
strategies:

o Plan X: as a typical enumerated FSM in P6.
o Plan Y: as a scalable block based on STD_LOGIC_VECTOR

signals.
o Plan C2: using building blocks like standard counters and other

components as in Chapter 1.

 Design data registers that are scalable to n bits.

 Design shift registers that are expandable to n bits.

 Design applications of sequential systems using registers and counters
as building blocks.

Sequential systems

87

7.1 1-digit BCD counter (flat)

This is the design of a 1-digit BCD counter using a flat design (1 VHDL file)
based on the plan X (state enumeration).

See the P7 project tutorial.

http://digsys.upc.edu/csd/P07/P7_T/Counter_planX/Counter_FSM.html

Problems on digital circuits and systems

88

7.2 Synchronous universal 4-bit binary counter

Our goal is to design as a very versatile building block that can be used in
other designs as a component. It is a synchronous, presettable (LD, parallel
load), 4-bit (modulo 16), reversible (up and down), binary counter with count
enable (CE) and terminal count (TC16) as represented in Fig. 50. It is a chip
similar to the classic 74LS169.

Fig. 50
Synchronous

4-bit universal
binary counter.

Symbol and
function table.

This is an
example
Proteus

simulation of a
very similar

circuit.

TC16

Counter_mod16

Q(3..0)

LD

CE

UD_L

CD

CLK

Din(3..0)

TC16 = ‘1’ when CE = ‘1’ and [(Q = 15 and UD_L = ‘1’) or (Q = 0 and

UD_L = ‘0’)]; ‘0’ otherwise

LD CE UD_L Q+ Synchronous operation after
the CLK’s rising edge

1 x x Din Parallel load (register data)

0 0 x Q Do nothing (inhibit)

0 1 1 (Q+1)mod16 Up counting in binary

0 1 0 (Q-1)mod16 Down counting in binary

Specifications
1. Symbol, function table, example of a timing diagram, state diagram.

How many states this sequential system must have?
Planning (plan Y)

1. Customise the general FSM architecture for this problem indicating
where every input and output is connected. Plan the circuit as a FSM
in a single VHDL file.

2. How many data flip-flops (D_FF) are required? Draw the schematic of
the state register. Which is the internal encoding the current_state
signal

3. Name the circuit Counter_mod16 and plan the circuit as a FSM in a
single VHDL file.

4. Write the truth table for the CC2 and propose an internal circuit.
5. Write the truth table for the CC1 and propose an internal circuit. Draw

the truth table’s flow chart as the behavioural interpretation.
Developing

6. Translate the circuit schematic to VHDL and start an EDA project to
synthesise it for a given CPLD/FPGA target chip.

7. Inspect and analyse the RTL view and technology schematics. Check
the number of DFF registers.

Test
8. Run a functional simulation translating the timing diagram into a VHDL

test bench.
9. Run a gate-level simulation and determine propagation time from CLK

to output (tCO) and thus, the maximum frequency of operation for the
given target chip.

http://digsys.upc.edu/ed/CSD/units/Ch2/U2_05/Counter_mod16.pdsprj
http://digsys.upc.edu/ed/CSD/units/Ch2/U2_05/Counter_mod16.pdsprj

Sequential systems

89

 Problem discussion.
This picture is an example of a functional simulation of the universal counter
modulo 16. The comments in red ink are very important to check whether the
circuit works as expected.

http://digsys.upc.edu/csd/P07/P7_T/Counter_mod16/Counter_mod16.html
http://digsys.upc.edu/csd/P07/P7_T/Counter_mod16/Counter_mod16_functional.jpg

Problems on digital circuits and systems

90

7.3 Synchronous modulo 12 counter

Design as a complete project following the usual steps, the synchronous
up/down modulo 12 counter represented in Fig. 51 using 2 different
strategies. Compare and discuss the advantages and drawbacks of each
strategy.

Fig. 51
Synchronous

up/down binary
counter modulo

12 with
asynchronous

clear direct.

TC12

Counter_mod12

Q(3..0)

CE

UD_L

CD

CLK

Project X. Single VHDL file (flat) FSM based on naming states and the use of
State_type enumerated signals. Thus, using this methodology this project
becomes simply another P6 FSM example.

Project Y. Single VHDL file (flat) FSM based on the arithmetic VHDL library and
the use of std_logic_vector signals. Thus, using this methodology this project
becomes another exercise like the Counter_mod16 in 7.2.

Project C2. Hierarchical structure (multiple file project) based on the building
block Counter_mod16 engineered in problem 7.2.

Problem discussion and project files.

http://digsys.upc.edu/csd/P07/P7_T/Data_register/Data_Reg_4bit.html

Sequential systems

91

7.4 Data register

Design a synchronous 24-bit data register using the plan Y.

 Here you are a tutorial on the design of a 4-bit data register.

http://digsys.upc.edu/csd/P07/P7_T/Data_register/Data_Reg_4bit.html

Problems on digital circuits and systems

92

7.5 Shift register

Design a synchronous 8-bit universal shift register using the plan Y.

 Here you are a tutorial.

How three blocks Shift_reg_8bit can be connected to build a 24-bit shift
register (plan C2)?

http://digsys.upc.edu/csd/P07/P7_T/Shift_register/Shift_Data_Reg_4bit.html

Sequential systems

93

7.6 Hour counter for a real-time clock

Our goal is to design an hour counter to be used in a real-time clock device to
count the hours in modes 0 – 12 (M = ‘1’) and 0 -24 (M = ‘0’). The Fig. 52
represents the schematic diagram of the application when connected to 7-
segment digits.

Fig. 52
Synchronous 2-digit
BCD module 12/24
counter

Specifications
1. Explain the function table of the hour_counter discussing the different

modes of operation.
2. Draw an example of timing diagram. How many states will the hour

counter contain?
3. Draw the function table and symbol of a synchronous 4-bit binary

universal counter (Counter_mod16).
Plan

4. Organize the internal architecture of the hour counter based on the
use of universal 4-bit binary counters (Counter_mod16) and
combinational circuits and logic gates.

5. How many VHDL files will be required to complete the
Hour_counter_top in Fig. 52?

Develop
6. Find the Counter_mod16.vhd file and translate the hierarchical

schematic in Fig. 52 to VHDL.
7. Start a synthesis project and inspect the RTL and technology views

schematics. Check the project summary to verify the number of DFF.
The target chip may be any CPLD or FPGA available in the laboratory.

Test
8. Translate the timing diagram in 2) to VHDL (Counter_mod16_tb.vhd)

and run the functional test.
9. Run a gate level simulation and measure the tCO parameter and thus,

the maximum speed of operation.
Prototype

10. Choose a laboratory experimentation board like the NEXYS 2 from
Digilent. Assign pins and build and check the prototype

Problems on digital circuits and systems

94

Hour_counter_top adding the necessary chips and modifications. Pay
attention on how the 7-segment digits are wired.

 Problem discussion.
This picture is an example of a functional simulation of the Hour_counter
working in the AM-PM mode (M = ‘1’).

http://digsys.upc.edu/csd/P07/P235_discussion.pdf
http://digsys.upc.edu/csd/P07/Hour_counter_functional.jpg

Sequential systems

95

7.7 6-bit binary universal counter

Specifications
Our aim is to design the block represented in Fig. 53, a 6-bit synchronous
binary counter (Counter_mod64) fully equipped with many features to make it
versatile as a component in many projects.

Fig. 53.
The sequential block
to be designed and
its function table.

LD RST CE UD_L Q+ Synchronous operation

1 x x x Din Parallel load (register data)

0 1 x x 0 Reset

0 0 0 x Q Do nothing (inhibit)

0 0 1 1 (Q+1)mod64 Up counting in binary

0 0 1 0 (Q-1)mod64 Down counting in binary

TC64 = ‘1’ when CE = ‘1’ and [(Q = 63 and UD_L = ‘1’) or (Q
= 0 and UD_L = ‘0’)]; ‘0’ otherwise.

1. Draw state diagrams for the circuit to describe the counter’s different
modes of operation. How many states will this FSM contain?

2. Draw a timing diagram to represent the different modes of operation:
Load, RST, count UP, count DOWN and do nothing.

Planning as a FSM in a single VHDL file (plan Y)
3. Draw the architecture of the FSM particularised for this problem and

indicate where all the inputs and outputs are connected.
4. How many registers (D-type flip-flops) will the system include? Explain

your answer.
5. Draw the truth table and flow chart of the combinational circuit CC1
6. Draw the truth table and flow chart of the combinational circuit CC2.

Problems on digital circuits and systems

96

Development using CAD/EDA tools
7. What is the synthesis process? In which way can we examine the result of

the synthesis process?

Verification:
8. Write the main features of a test bench file “Counter_mod64_tb.vhd”

necessary to perform a functional simulation. For instance, translating to
VHDL some vectors from the 2 section.

9. What are the “VHO” and the “SDF” files? Which is the use of these files?
The target chip is the ispMACH4128V which has D_FF with a tCO = 2.7 ns
and logic gates with a tPD = 2.7 ns. Which may be a good estimation of the
maximum frequency if operation? Explain your answer.

Sequential systems

97

7.8 Johnson counter

Design a synchronous 5-bit Johnson counter with count enable and
reversibility control signals as shown in the symbol in Fig. 54 using both the
Plan X (FSM strategy enumerating/labelling states) and the Plan C2 (using an

standard component like the Counter_mod16 in problem 7.2).

a) Draw the Johnson code for 5 bits. Draw the state diagram
indicating both, transitions and outputs. Draw the function table
for this counter. Draw an example of a timing diagram.

Plan X:
b) Draw the FSM structure consisting of CC1 and CC2 and the state

register. Indicate its inputs and outputs. How many D_FF will
contain the state register if the internal states are coded in binary,
and if they are coded in one-hot?

c) Draw the CC1 truth table and its equivalent behavioural
representation in a flow chart.

d) Write the main VHDL sentences of CC2.

Plan C2:

e) Propose an internal architecture based on the Counter_mod16
and other blocks combinational blocks. A good idea is to design
firstly the counter with only up counting direction. And secondly,
complete de counter adding the reversibility feature.

f) Annotate completely the schematic, chips, signals, etc. and
leave it ready for VHDL translation. How many VHDL files will
this project include? How many D__FF will this counter
include?

For both design plans:

g) Write the VHDL code copying and adapting a similar example
from the digsys web. Run the EDA synthesis to inspect the
RTL and technology views. Print them both and annotate
comments. Check the number of D_FF used.

Fig. 54
Symbol of the
sequential system

http://digsys.upc.edu/csd/P07/P7_T/Counter_mod16/Counter_mod16.html

Problems on digital circuits and systems

98

h) Use a VHDL test bench and run an EDA functional simulation
to check how the circuit behaves in time. Print the timing
diagram and make annotations.

i) Which is the maximum frequency that can be assigned to
the CLK signal when performing a functional simulation?

j) Which is the maximum frequency that can be assigned to

the CLK signal when performing a gate-level simulation if the
target chip is an Altera CPLD Max II EPM2210F324C3 that
has the following characteristics:

 Problem discussion using plan X.

http://digsys.upc.edu/csd/P12/EX/1718Q2_CSD_EX2_solution_P1.pdf

Sequential systems

99

7.9 PIC18F4520 TMR2 prescaler design

Design (specify and plan) the programmable Post_scaler available in a
PIC18F TMR2 represented in Fig. 55 using VHDL techniques and
structural plan C2 for a target FPGA chip. Use standard sequential and
combinational circuits and logic gates. Let us rename the symbol and
ports: TMR2 is the CLK input to the circuit, T2OUTPS(3..0) is the
frequency division selector Div(3..0), and Set TMR2IF output is the
terminal count TC.
The Post_scaler can divide from 1:1 to 1:16 depending on Div(3..0)
binary value from “0000” to “1111”. For instance, if FCLK = 15 kHz and
Div(3..0) = “0100”, the circuit becomes a 1:5 frequency divider
generating FTC = 3 kHz; if FCLK = 84 MHz and Div(3..0) = “1011”, the
circuit becomes a 1:12 frequency divider generating FTC = 7 MHz.

Fig. 55

a) TMR2
postscaler block
schematic from

Microchip and our
adapted symbol.

b) Symbol and

function table of
component

Counter_mod16
that may be used

in this structural
design.

 a)

b)

 Problem discussion using plan C2 where up to three designs are proposed.

https://digsys.upc.edu/csd/units/exams/EX2/2021Q1_CSD_EXAM2_sol_P2.pdf

Problems on digital circuits and systems

100

Sequential systems

101

P8 Dedicated processors and advanced circuits

Objectives

After studying the content of these projects, you will be able to:

 Explain the concept of a datapath or operational unit.

 Explain the need and the functionality of the control unit based on an
FSM.

 Design complex circuits or dedicated processors based on the
datapath and control unit.

 Design CLK generators to obtain from a high frequency quartz crystal
the many CLK signals required for the project under construction.

 Explain how to design frequency dividers.

 Explain how to square pulsed signals using T_FF.

 List a number of applications and complex circuits that can be
designed using the techniques and strategies described in this P8
section.

 Explain why a microprocessor is a programmable dedicated processor.

Problems on digital circuits and systems

102

8.1 Generation of CLK signals

The sketch in Fig. 56 represents the internal architecture of the CLK_generator
block that was built to obtain the required CLK signals for a traffic light
controller FSM when connected to the UP2 board quartz crystal oscillator of
25.175 MHz.
a) How many DFF registers will require the circuit?
b) How many VHDL files will require the implementation of the circuit?
c) How can you speed up the simulation of the circuit using an EDA tool?

Fig. 56
Proposed internal
architecture for a
generator of CLK

signals.

d) Explain how to plan and design a similar circuit to obtain the squared
signals of 2.5 kHz (CLK_2_5kHz_SQ) and 10 Hz (CLK_10Hz_SQ) from an
OSC_CLK_in of 24 MHz.

e) Explain how to design a circuit like the Chip 2 FREQ_DIV_25 in Fig. 56
using VHDL and the FSM technique (plan Y). Represent a timing diagram
to show how it works.

f) Write the VHDL code for the circuit and implement the system using EDA
tools.

Sequential systems

103

8.2 Pulse generator

In Fig. 57 there is the symbol of a synchronous sequential machine to generate
a burst of digital pulses. The proposed circuit is an adaptation to CSD of the
original idea from this book [2]. The timing diagram in Fig. 58 represents how
a number of pulses (0, 1, 2 or 3) are generated after triggering the Start_PB
input. It can also be seen how an end of operation flag (EO_Flag) is issued to
indicate that the machine is no longer occupied and can be triggered again.

OSC_CLK_in

Pulse_generator

CD

Sel_pulses_SW(1..0)

Start_PB
Pulse_out

EO_Flag

Sel_pulses_SW(1..0)
Number

of pulses

00

01

10
11

0

1

2
3

Fig. 57
Symbol and function
table for the proposed
pulse generator.

2 3 0 1 0 2

30

CLK

CD

Start

Sel_pulses

Sel_pulses_SW

Pulse_out

EO_Flag

LDR

1 0

Three pulses One pulse No pulse

t

Fig. 58
Example of a timing
diagram showing
circuit’s activity. Start is
a synchronous single
pulse derived from the
output of a debouncing
filter.

The architecture in Fig. 59 fulfil the specifications; it is based on a FSM (Chip1)
and other components. Why a component such a synchronous data register
(Chip2) is necessary? Why a circuit like the debouncing filter (Chip4) is
required to interface the Start push-button?
Explain the internal architecture of the Data_register_2bit component. How
many states does it have? How many data flip-flops (DFF) are required to
implement its state register?
Infer the state diagram of the Pulse_Gen_FSM that may solve the sequence of
operations to generate the outputs.
Draw the CC2 truth table and its flowchart interpretation, so that it can be
coded in VHDL in the usual CSD style.

https://digsys-blog.upc.edu/wp-content/uploads/2016/11/engineering_digital_design_example_FSM.pdf

Problems on digital circuits and systems

104

Fig. 59
Sketch of an

internal
architecture

for the
system.

Pulse_Generator

CPLD / FPGA

Chip1

CLK

Pulse_gen_FSM

CD

Sel_pulses(1..0)

Start

Pulse_out

EO_Flag

Chip3

CLK

CLK_Generator

CD

CLK_10kHz_SQ

CLK_100Hz_SQ
CD

OSC_CLK_in

CE
‘1’

CLK

Data_Register_2bit

CD

LD

Din(1..0)

Q(1..0)

Chip2

CLK_sample

Debouncing_filter

CD

PB
Qp

Chip4

Qd

Start_PB

Sel_pulses_SW(1..0)

Pulse_out

EO_Flag

CLK
CLK

CLK_sample

LDR

LDR

Start

Sel_pulses

Draw the CC1 truth table and its flowchart interpretation, so that it can be
coded in VHDL in the usual CSD style.
Draw the internal circuit of the state register. How many data flip-flops (DFF)
are required to implement it if we encode the machine in binary (sequential),
or alternatively in one-hot?
Write down the VHDL test bench translating approximately the inputs signals
in the Fig. 58 diagram.
If the FPGA used as a target chip to synthesise the system has a worst-case
time to output propagation delay (tCO) of 5.6 ns, which is the maximum CLK
frequency and so the minimum pulse duration?
If the circuit uses a 16 MHz OSC_CLK_in from a quartz crystal, invent a CLK
generator block to produce both square signals, a system CLK of 10 kHz and a
100 Hz signal to drive the debouncing circuit. How many VHDL files may it
contain?

Sequential systems

105

8.3 Designing an industrial application

In a gym and fitness centre, there are some shower stalls like the one
represented in Fig. 62 that have to be automated to generate cycles of

contrasting hot (48 C), warm (26C) and cold (4C) water sprays simply
clicking a single start push button (SB). After clicking the SB, initially warm
water flows for 50 s (H = C = ‘1’), then hot water (H = ‘1’, C = ‘0’) for 10 s, and
thirdly cold water (H = ‘0’, C = ‘1’) for 20 s, and this cycle is repeated another
time; finally, the system goes idle (H = C = ‘0’) to wait for another user service.
During the operation the R_LED turns on and the water solenoid valve (SV) is
on. Let us design the digital control system connected to the valves’ power
driver (Chip5) using two technologies: a CPLD/FPGA and a microcontroller.

Fig. 60
Photograph and
sketch of the
shower installation
to be automated.

CLK_sample

Debouncing_filter

CD

Qp

CLK

CLK

CLK_Generator

CD
CLK_10kHz_SQ

CLK_80Hz_SQ

CE

System_CLK

CLK_sampleOSC_CLK_in

CNTL_System

Chip1

Chip2

System_CLK

Start button

HV

12 MHz

CNTL_FSM

CV

Prog_timer

Chip3

Chip4

T_Flag

S_Time (1..0)

CLK

2

CLK

Trigger

Sel_Time(1..0)

SB

CD
CD

‘1’

Power_driver

Trigger

12 V

Chip5

H

C

3.3 V

H

C

T_Flag

SB

R_LED
R_LED

SV

Problems on digital circuits and systems

106

1. Explain the function of the circuit Chip1, why it is required for
conditioning the start button external signal.

With respect to the Chip4:
2. Draw the state diagram of the application explaining both, state

transitions and outputs in each state.
3. Draw an example of a timing diagram.
4. Draw the architecture of a FSM for the Chip4 explaining where all the

inputs and outputs are connected.
5. Draw the CC2 truth table and its flowchart interpretation, so that it

can be coded in VHDL in the usual CSD style.
6. Draw the CC1 truth table and its flowchart interpretation, so that it

can be coded in VHDL in the usual CSD style.
7. Draw the internal circuit of the state register. How many bits and DFF

(data-type flip-flops) will be used if the states are coded in one-hot?

With respect to the Chip3:

8. Explain the internal architecture, components and the number of
VHDL files of the Prog_Timer project.

With respect to the Chip2:
9. Deduce and explain the internal architecture, the number of VHDL

files and names of the CLK_Generator project.
10. We have measured by means of a gate-level VHDL simulation for the

target CPLD/FPGA where the circuit is synthesised, a worst-case CLK
to output propagation delay (tCO) of 6.3 ns. Thus, which is the
maximum OSC_CLK_in frequency and so the minimum pulse duration?

Sequential systems

107

8.4 Design a 2-digit even/odd counter with start/stop button

The idea is to design a 2-digit BCD counter that counts even or odd numbers.
Fig. 61 shows the main ideas of the specifications. Using the same ST button
for start and stop operations makes it possible to plan the systems as an
advanced circuit based on datapath and control unit to better handle counting
operations.

Fig. 61
Symbol of the
proposed
counter and
function table
when the
counter is
running.

You can draw
several timing
diagrams to get
a better idea on
how the system
works, and also
a state diagram
for the
Control_unit
block is required
to figure out
how the status
and control
signals work.

These is a feasible plan that relies on previous CSD components and projects.
You have two options to design the binary Counter_mod50:

a. Using the plan Y in a single VHDL file.
b. Using a plan C2 and components Counter_mod16 and other logic.

http://digsys.upc.edu/csd/units/exams/proj/Proj_8_4_plan.pdf

Problems on digital circuits and systems

108

8.5 Synchronous serial adder

This is the project to review and write as a problem: serial adder (ref.)

http://digsys.upc.edu/ed/CSD/terms/00_old/1314Q1/probl.html#EX3

Sequential systems

109

8.6 Timer MMSS

This is the project proposed in P8.

http://digsys.upc.edu/csd/P08/P8.html

Problems on digital circuits and systems

110

8.7 Synchronous serial multiplier

This is the project to review and write as a problem: serial multiplier (ref.)

http://digsys.upc.edu/ed/CSD/prob/Ch3/P10/Prob3_10.html

Sequential systems

111

8.8 Serial transmitter and receiver (USART)

This is the project to review and write as a problem: USART (ref.)

http://digsys.upc.edu/ed/CSD/prob/Ch3/P09/Prob3_09.html

Problems on digital circuits and systems

112

8.9 Steeping motor control based on a dedicated processor

This is the project to review and write as a problem: (ref.)

http://digsys.upc.edu/ed/CSD/prob/Ch3/P12/Prob3_12.html

Index

113

3

Problems on digital circuits and systems

114

Microcontroller applications
8

P9 Basic theory on microcontrollers (µC) and basic digital I/O
interface

Objectives

After studying the content of this chapter on the basics of microcontrollers,
you will be able to:

 Explain why there are 8-bit, 16-bit, 32-bit families of microcontrollers.

 Explain the basic architecture of an 8-bit microcontroller: ALU,
working register (accumulator), configuration registers, RAM memory,
I/O ports, program memory, Harvard vs. Von Neumann architectures,
etc.

 Design combinational circuits using a microcontroller interfacing the
digital I/O ports for inputs and outputs.

 Capture schematics containing microcontroller chips in Proteus
(hardware planning).

 Comprehend the idea of a hardware/software diagram.

 Organise the software plan using the hardware interface functions:
init_system(), read_inputs(), write_outputs(), and the data processing
function truth_table().

 Start a software project using the IDE tool and the C compiler.

 Translate diagrams and flowcharts to C language for writing C source
files.

 Build software projects for a given target microcontroller in order to
obtain executable files (.cof, .hex).

 Simulate applications based on microcontrollers using Proteus.

 Watch RAM variables and execute step-by-step instructions for
debugging purposes.

Sequential systems

115

9.1 The microcontroller PIC16F

Answer the following questions referred the microprocessors in general:

1. Explain the differences between Harvard (Microchip PIC) and Von

Neumann (Intel 8051) microprocessor architectures. Draw the

sketch of the architectures.

2. Which is the main architectural difference between 8/16/32 bits

microprocessors?

3. Which are the functions of the FLASH (ROM) memory and the

RAM registers?

4. Explain what the stack memory is and how it is used for.

5. Describe the main blocks of the central process unit (CPU) and

how can you connect it to the content of the previous Chapters 1

and 2.

6. How an assembler instruction is executed? Find an example of C

code disassembled and explain how it works.

7. How many clock cycles are required for executing an instruction in

assembler?

The architecture of the PIC16F87xA family is presented in Fig. 62.

- Examine it and list the components that you could be able to design and

synthesise, if that were the case, into a PLD using VHDL and applying

strategies from previous chapters.

- Can you redraw the architecture as a programmable dedicated processor

to solving each machine-code instruction?

- Draw the blocks of the RAM and the ROM components and explain how to

perform memory writing and reading operations.

- Find the specification of the Timer0 peripheral and compare them with

the programmable timer designed in Chapter 2.

http://ww1.microchip.com/downloads/en/devicedoc/39582b.pdf

Problems on digital circuits and systems

116

Fig. 62
PIC16F87xA
architecture.

Sequential systems

117

Fig. 63
PIC16F

Assembler RISC
instruction set.

Problems on digital circuits and systems

118

9.2 Invent a Dual_MUX4 based on a µC

This assignment and tutorial can be found here.

http://digsys.upc.edu/csd/P09/P9_T/Dual_MUX4/dual_mux4.html

Sequential systems

119

9.3 1-digit BCD adder

The specifications of this project are simply add two 1-digit BCD numbers
considering as well the Cin and the Cout signals to be able to chain components
of the same kind. The circuit to solve is represented in Fig. 64.

Fig. 64
1-digit BCD adder.

Remember that, as usual, you have to organise the documentation to hand in
in 4 sections, each one in different sheets of paper. Section 5, prototyping, is
always optional in case you like to invest some more time in the laboratory
downloading the microcontroller configuration program (hex) to the training
board while measuring and characterising the prototype using workbench
instrumentation.
The problem is reviewed and assessed in this way: half of the project, sections
1 and 2, is prepared in classrooms using paper and group discussions. The last
sections 3 and 4 are solved by means of the virtual laboratory (IDE –
Simulator) available from our virtual desktop computers. Remember that each
of you have access to your personal network disk (L:) to properly develop and
test your own project.
- Specifications and planning 5p.
- Development and test 5p.
A note on group discussions. Learning to work cooperatively is not an easy
task, but indeed, very demanding. It doesn’t mean that one of you has to do
all the work and the others simply have to copy and paste. On the contrary,
use cooperation and group dynamics to clarify your ideas and to organise the
project. Thus hand in an individual report (you are the responsible and the
only author of all the material):
- Handmade specifications, tables, symbols, diagrams, timing diagrams,

bullet list, etc.
- Handmade schematics, block diagrams, annotations, flowcharts,

comments, etc.

http://digsys.upc.edu/csd/P09/design_flow_slide.png
http://digsys.upc.edu/csd/units/project/teamwork/cooperative_work.html

Problems on digital circuits and systems

120

- Write your own code and draw your own schematics. Print and comment
schematics and C code. This is how you can print correctly your C files.

- Print the project compilation results to shown how your IDE has
generated no errors. Annotate how many RAM memory bytes has been
used and discuss whether there is an agreement with your initial planning
of variables. Explain how long is your Flash program. Explain the
difference between the COF and the HEX configuration files. Print a
portion of disassembled code and explain detains on how the data is
transferred or the operations are executed. Etc.

- Print test results with meaningful annotations and discussion on the
results to demonstrate that the project works as expected. Measure how
long does it take to run the main loop code. Measure the time required to
execute a single assembly instruction.

And on top of that, be fair: you are here at this university to learn the content
of this subject deeply, not superficially. A hardware engineer has to be able to
project circuits professionally and successfully, and to meet this goal, it is
required a complete personal involvement and engagement. You can count as
well with our commitment to help you any time.

A tutorial on the project can be read here.

http://digsys.upc.edu/csd/units/project/project.html#Printing
http://digsys.upc.edu/csd/P09/P9.html

Sequential systems

121

9.4 12-to-4 encoder

The project objective is to design an encoder Enc_12_4 like similar to the one
presented in problem 2.4 using a µC. For instance, the application can be
integrated as a subsystem in a professional PBX door phone with dialling
keypad as represented in Fig. 65. The device has to generate the 4-bit code of
the clicked key. BCD codes for keys from 0 to 9, and “1010” for the hash
symbol “#” and the “1011” symbol for the asterisk symbol “*”. The group
select output (GS) has to be held high when any key is pressed. The encoder
also has an enable input (Ei) and an enable output Eo to detect when the
encoder is disabled or when is active but no one is pressing keys. Finally, a 7-
segment output will represent the code of the key pressed.

Fig. 65
The keyboard

that that has to
be interfaced to a
commercial PBX

and the
commercial

reference of the
diagram..

The emphasis is set therefore in learning basic polling digital inputs and
writing digital outputs. The truth table will be solved using a behavioural plan
B interpretation in C language, organising the hardware-software diagram so
that the input and outputs variables will be held in RAM memory. Your
planning has to be similar to the one discussed in Chapter 1, but using C code
instead of VHDL. The symbol for the Enc_12_4 that will have priority high as
usual in this kind of devices is represented in Fig. 66.
1. Specifications. Draw the truth table for this Enc_12_4.
2. Plan. Propose a hardware-software diagram naming all the electrical

signals, RAM variables and the software functions.

https://en.wikipedia.org/wiki/Business_telephone_system
https://www.amazon.com/gp/product/B007WMYVTA?SubscriptionId=AKIAITNB2CDYWOTKDARQ&tag=blackfriday0a9-20

Problems on digital circuits and systems

122

Hardware. Copy and adapt a circuit from any of the previous projects and
name it Enc_12_4.pdsprj. Make the pin assignment connections
accordingly to the options a, b or c given by your instructors.

Software. Explain how to configure the µC in init_system().
Organise using a flowchart the interface function read_inputs().
Organise using a flowchart the interface function write_outputs().
Infer the truth_table() software function using a behavioural
interpretation and the corresponding flowchart.

Fig. 66
Symbol of the
Enc_12_4 and
the idea of
designing it
using a µC.

You can solve
in a phase#1
the circuit with
GS, Ei, Eo, and
the BCD
outputs Y; and
later in a
phase#2 you
can add the
feature of the 7-
segment
interface
including the
other S_L
signals.

3. Developing. Write the Enc_12_4.c. source code translating the function
flowcharts.
Start a software IDE project for the target microcontroller PIC18F4520 and
generate the configuration files “.cof” and “.hex” after compilation.
Discuss the project summary: % of ROM used for the code, number of
RAM bytes used, etc. Find the RAM memory position of the variable
Var_D. How many bytes does it occupy?

4. Test. Do it interactively in Proteus every time a few lines of code are
added to the source file. Measure how long does it take to run the main
loop code when using a 4 MHz oscillator.

Sequential systems

123

P10 Programing FSM in C style. Events detection using interrupts

Objectives

After studying the content of this chapter on the basics of microcontrollers,
you will be able to:

 Explain how an FSM can be organised and solved using a
microcontroller.

 Detect events like rising or falling edges using interrupts.

 Explain the interrupt logic of a microcontroller and the function of the
interrupt service routine ISR().

 Draw the hardware-software diagram of an application based on FSM.

 Redesign applications based on sequential systems using
microcontrollers and C language.

Problems on digital circuits and systems

124

10.1 1-digit BCD counter

This is a plan X example to relate the design of FSM to Chapter 2.

A tutorial on this project is available here.

10.2 Binary counter modulo 256

This is a plan Y example to relate the design of FSM to Chapter 2.

Project files are available here.

http://digsys.upc.edu/csd/P10/P10T3/counter_BCD_1digit.html
http://digsys.upc.edu/csd/P10/P10T4/Counter_mod256.zip

Sequential systems

125

10.3 4-bit serial data transmitter

 Let’s design a simple 2-wire asynchronous data transmitter based on a µC for
sending to another computer a nibble (4-bits) of data. It is basically a right-shift
register. The application symbol and pinning of the PIC18F4520 is represented
in Fig. 67. We’ll use the FSM style of programming in C language. The format for
the serial output once the start-transmission ST rising edge is detected by
means of an interrupt is: Start-bit (‘0’), Data_in (0), Data_in (1), Data_in (2),
Data_in (3); and then the end-of-transmission EoT pulse is generated to
indicate that the transmitter has ended the process (see the Fig. 68). Serial_out
is held high when idle.

Fig. 67
Symbol of
the data
transmitter
and the µC
PIC18F4520
from
Microchip.

a) Draw the hardware schematic. Reset circuit, XTAL oscillator, Data_in(3..0)

= (RA2, RA1, RD7, RD6), CLK (RB0), ST (RB1), Serial_out (RC5), EoT (RC2).
Explain how to configure the inputs and outputs in the init_system().

Problems on digital circuits and systems

126

Fig. 68
Example of a
section of a
timing
diagram
where it can
be seen how
the data is
read and
right shifted
in a single
wire.

b) Draw the hardware/software diagram indicating the required RAM
variables and how the FSM is solved in software. The transmission
sequence will start when a rising edge is detected at the start ST push
button by means of the interrupt INT1IF. The CLK input will generate
an interrupt INT0IF so that a new bit is transmitted at a time at the
Serial_out as represented in Fig. 68. Transmission speed is 150 b/s.

c) How read_input() works to generate the char variable var_Data_in?
d) How the variables var_Serial_out and var_EoT are written to the

corresponding pins using write_outputs() without interfering the
other µC port pins?

e) Which is the ISR() used for? Propose the flow chart.
f) Draw an state diagram showing the state transitions and the outputs

for each state. Name the states, for instance: Idle, Start_bit, Data_0,
Data_1, etc.

g) Draw the truth tables and their equivalent flow charts for the
state_logic() and output_logic().

h) How to use and program the TMR0 peripheral in 8-bit mode to
replace completely the functionality of the external CLK as the baud-
rate generator?

A tutorial on the project can be read here.

http://digsys.upc.edu/csd/P10/P10.html

Sequential systems

127

10.4 5-bit Johnson counter

 A tutorial on this project is available in these references (1), (2).

http://digsys.upc.edu/csd/P10/P10T1/chip74HCT4027.html
http://digsys.upc.edu/csd/P10/Johnson/P10.html

Problems on digital circuits and systems

128

10.5 Stepper motor controller

Design the digital control unit (stepper_controller) for the “9904 112 31004”
stepping motor from Premotec shown in Fig. 69 following our microcontroller-
based strategy. Today stepper motors can be found in computer peripherals,
machine tools, medical equipment, automotive devices, or small business
machines, to name a few applications. Clockwise (CW) and counter-clockwise
(CCW) rotation can be achieved by reversing the step sequence. Inhibit (INH)
is like a count disable, do not letting the motor rotate. Step or stride angle is
7.5 degree, thus 48 CLK periods are required for a full revolution. External CLK
frequency is 96 Hz, and so when running it rotates at 2 revolutions per second
(Fig. 73). The idea is to connect four port pins to the motor coils and drive
them with the right sequence so that the motor inhibits or rotates clockwise
or counter-clockwise accordingly to the input signals INH and CW. Four
additional pins are used connected to LED to visualise the coils binary
sequence.

Fig. 69
Example of two-phase

stepper motor:
characteristics,

connections and
unipolar winding circuit
using a power driver to

energise coils.

https://www.motioncontrolproducts.com/applications/stepper-motor-how-does-it-work/

Sequential systems

129

State9

State5

State6

State10

c1

c2

c1

c1

c1

c2
c2

c2

c3

c3c3

c3

c1INH=1
c2CW=1 and INH=0
c3CW=0 and INH=0

MCLR_L State transitions:

(1001)

(0101)

(0110)

(1010)

Fig. 70
Full wave steeping
sequence and unipolar
winding circuit using a
power driver to energise
coils. Proposed state
diagram to control the
FSM.

1. Draw the schematic: input switches, outputs, reset (MCLR_L) and

4.8 MHz quartz crystal oscillator OSC.

2. Draw the hardware-software diagram. Why the rotation CLK block

has to be connected to RB0/INT pin? What the interrupt service

routine ISR() is used for?

3. Organise and name RAM variables for the project. Explain how to

configure port pins and interrupts in init_system().

4. Explain how to poll the input values using bitwise operations in

read_inputs().

5. Explain how to drive the eight outputs using bitwise operations in

write_outputs().

6. Draw the truth table and flowchart for the output_logic().

7. Draw the truth table and flowchart for the state_logic().

8. Replace the external CLK configuring the embedded TMR0 (Fig. 71

in 8-bit mode) to obtain the same 96 Hz step frequency.

Fig. 71
TMR0 schematic in
8-bit mode.

 Problem discussion.

https://digsys.upc.edu/csd/units/exams/EX2/2021Q1_CSD_EXAM2_sol_P3.pdf

Problems on digital circuits and systems

130

Sequential systems

131

 P11 Peripherals: LCD display

Objectives

After studying the content of this chapter on LCD peripheral, you will be able
to:

 Explain the basics of an LCD display and its speed of operation.

 Design the electrical LCD interface to a microcontroller.

 Compile multiple-file projects integrating LCD peripheral C libraries.

 Enhance projects from previous units with an LCD for printing ASCII
static messages.

 Use a variable (var_LCD_flag) to print only when there is new
information.

 Use <stdio.h> functions to format strings of characters.

 Print dynamic data from several types (int, double int, float) on the
screen.

 Connect an LCD to a microcontroller (Arduino, ATmega328P) using a
2-wire I2C interface.

Problems on digital circuits and systems

132

11.1 LCD display using ASCII messages and static data

 A tutorial on this project is available in this reference (1).

11.2 LCD display using dynamic data

 A tutorial on this project is available in this reference (1)

11.3 Interfacing an I2C display

 A tutorial on this project is available in this reference (1)

https://digsys.upc.edu/csd/P11/P11.html
https://digsys.upc.edu/csd/P12/Timer_LCD_TMR0/Timer_LCD_TMR0.html
https://digsys.upc.edu/arduino/P15/P15.html

Sequential systems

133

P12 Peripherals and complex applications

Objectives

After studying the content of these projects, you will be able to:

 Explain the TMR0 architecture and how to configure it for timing and
counting applications.

 Deduce the timing period (TP) design equation and how to generate
an arbitrary large counting modulo using RAM memory post-scalers.

 Determine for the TMR0 the systematic software overhead when
timing.

 Explain the TMR2 architecture and how to configure it for precision
timing applications.

 Explain how to adapt applications based on dedicated processor
architectures (P8) to microcontrollers.

Problems on digital circuits and systems

134

12.1 Industrial application

This problem is connected with problem 8.3. The idea now is to design it using
a microcontroller instead of a dedicated hardware design in VHDL. Read the
assignment and solve the initial questions 1, 2, 3, 4.
Continue the problem as follows:

5. Draw the hardware schematic for an Atmel ATmega8535
microcontroller. Connect all the inputs and outputs to convenient I/O
port pins, the reset button and the 12 MHz quartz crystal.

6. Architecture of the software. Organise and describe the program
variables. Explain the use of interrupts. Assume that in a Phase #1 of
the design, an external CLK signal of 4 Hz is available to generate the
warm, hot and cold-water timing periods of 50, 10 and 20 s
respectively.

7. Describe the flowchart of bitwise operations for the functions to
interface the hardware: read_inputs(), write_outputs() and
ISR(interrupt service routine). What kind of operations are solved by
the init_system() function?

8. Describe the truth table and flowchart of the function to solve the
state transitions: state_logic().

9. Describe the truth table and flowchart of the function to implement
the output variables: output_logic().

10. Explain how to implement the timing signal of 4 Hz s internally using
the Timer0 counter/timer peripheral in a Phase #2 of the project.

Sequential systems

135

12.2 Simple remote control

We want to design a very simple wireless infrared remote control for an
electronic equipment as shown in Fig. 72. In this initial stage of the design, the
Chip1 is the microcontroller while the other components are external
integrated circuits. The Chip2 (decoder BCD to 7-segments) is used to show
the channel number, the Chip3 is the infrared transmitter, and the Chip4 is a 2
seconds CLK. Furthermore, the volume control is not implemented and thus
only the buttons BU and BD are considered.
The system has a capacity of 7 channels. To increment the channel the BU
(Channel up) has to be pressed. To decrement the channel number the BD
(Channel down) has to be pressed. If both buttons are pressed or released
simultaneously, the channel count is maintained. The buttons are sampled
every 2 seconds (0.5 Hz). The outputs C(2..0) represents the channel selected
in binary.

Fig. 72
Schematic of a basic
remote control for 7
channels.
.

Design phase #1
1. Timing diagram.
2. State diagram. The initial state is the Channel 1.
3. Hardware circuit. Connect input and output pins to the microcontroller

ATmega8535, a master reset and crystal oscillator of 8 MHz.
4. Architecture of the software. Program variables. Use of interrupts.
5. Functions to interface the hardware: init_system(), read_inputs(),

write_outputs(), ISR(source of interrupt). Flowchart of bitwise operations.
6. The function to implement state transitions: state_logic(). Truth table and

flowchart.
7. The function to implement the outputs: output_logic(). Truth table and

flowchart.
Design phase #2

8. If we like to include into the microcontroller the functionality of the Chip2
(decoder BCD to 7-segments), so that this external chip will be no longer
required, how to proceed?

Problems on digital circuits and systems

136

9. If we like to include the Power_ON/OFF button into the microcontroller,
so that when clicked the code “000” is generated immediately, how to
proceed?

Sequential systems

137

12.3 Non-retriggerable timer

1. Specifications
Our aim is to design a timer of exactly 11.25 s as represented in Fig. 73. It is
non-retriggerable, which means that the system is not affected even if you
click the Trigger more than once while active in the timing period. In this
project, the strategy will be to count external/internal pulses once the trigger
signal is detected as represented in the timing diagram. The project is based
on a PIC18F4520 microcontroller from Microchip. We will consider two design
options and you have to choose one of them:

Option A: Using the external 16 Hz clock input as the INT1
interrupt source.
Option B: Using the internal TMR0 peripheral instead of the
16 Hz clock input.

Fig. 73
Circuit symbol and
waveforms for the
“Timer” project. In
option B the CLK
(INT1) is not
connected because
the internal Timer0 is
used instead.

2. Planning. A microcontroller-based architecture running a FSM.
1. Hardware: draw the schematic indicating where to connect and how the

system oscillator, the reset circuit, and all the remaining inputs and
outputs.

2. Software: Draw a possible state diagram for the timer system. How many
states will this FSM contain? Which is the task to be performed in each
state?

Problems on digital circuits and systems

138

3. Infer all the software variables (names and types) that will be required for
managing the application. How many bytes of RAM memory will require?
What kind of variable is current_state?

4. Explain how to organise the software (main, setup, interrupts, write
outputs, etc.) and describe the operations to setup the system
init_system() and explain how to set a pin as input or output.

5. Describe the bitwise operations and the flow chart required to write the
output: write_outputs().

6. Write the C code lines of the interrupt service routine ISR().
7. Describe the truth table and how to organise the flow chart of the

state_logic() function.
8. Describe the truth table and how to organise the flow chart of the

output_logic() function.
3. Development and D. Verification

9. Which EDA and debugging tools and techniques are you going to use to
compile the code and test the system in Proteus?

10. (extra) Download the microcontroller’s configuration file to the PICDEM 2
Plus board and verify how it works connecting the LED at the T_out
output. If the Option A was chosen, use the laboratory’s signal generator
to obtain the16 Hz square wave that has to be applied at pin RB1/INT1.

Sequential systems

139

12.4 Timers. PWM generation

Fig. 74 shows the symbol of an application based on the PIC18F4520 (Fig. 75)
running with an 8 MHz crystal quartz oscillator. The idea is to control the
rotation speed of a direct current motor generating a 25 Hz waveform that
has 2 possible selectable duty cycles: DC1 = 20% and DC2 = 80%. The 7-
segment display will show the sign “-“ when idle, and the numbers 1 or 2
depending on the DC selected by the switch. The button B starts and stops de
waveform generation. Fig. 76 shows an idea of the state diagram.

a) Draw the two waveforms indicating the TON1, TOFF1, TON2 and TOFF2
periods of time.

b) Draw the schematic connecting the inputs and outputs to the
PIC18F4520. Add the crystal oscillator and the MCLR_L circuits. Explain
how to configure the inputs and outputs in the init_system().

c) Explain how to connect and configure the TMR0 (Timer 0) peripheral
to generate interrupts. Which are the necessary N1 and N2 values for
the pre-scaler and the TMR0 counter to be able to generate all the
required timing periods? [
Timing_period = (4/FOSC)· N1· N2]

d) Draw the hardware/software diagram indicating the required RAM
variables and how the FSM is solved in software. How to implement

Fig. 74
This is an idea of the
state diagram
proposed to run this
application. It must
be completed.

Fig. 75
Pinning of the
microcontroller
PIC18F4520

Problems on digital circuits and systems

140

the functions read_inputs(), write_outputs() and ISR()? How and
where to drive the 7-segment display to show the sign “-“ and the
numbers “1” and “2” ?

e) Complete the state diagram represented in Fig. 76 and deduce the
truth tables for the main functions of the C code: state_logic() and
output_logic().

 Fig. 76

This is an idea of the
state diagram

proposed to run this
application. It must be

completed.

 Problem discussion.

http://digsys.upc.edu/csd/P12/EX/1718Q2_CSD_EX2_solution_P3.pdf

Sequential systems

141

12.5 Temperature measurement using timers

12.6 Temperature measurement using A/D converters

Problems on digital circuits and systems

142

 4

Sequential systems

143

Bibliography and internet links

Bibliography

[1] Hwang, E. O., Digital logic and microprocessor design with VHDL,

Thomson, Toronto, CA. 2005.
[2] Tinder, R. F., Engineering Digital Design, 2nd ed., Academic Press,

London, UK, 2000.
[3] Reese, R. B., Microprocessors, from Assembly language to C using

the PIC18Fxx2, Da Vinci Engineering Press, Hingham, USA, 2005.
[4]
[5]
[6]

Internet links

[7] CSD learning objectives.
[8] Indications for professional communications by email.
[9] Thunderbird e-mail client.
[10] Firefox internet browser.
[11] Google Suite cloud file system and applications.
[12] CSD software.
[13]

http://www.upc.edu/grau/guiadocent/ing/300022/digital-circuits-and-systems.pdf
http://digsys.upc.edu/csd/Questions_e_mail.pdf
https://www.thunderbird.net/en
https://www.mozilla.org/en-US/exp/firefox/
https://gsuite.google.com/
http://digsys.upc.edu/csd/soft/soft.html

Problems on digital circuits and systems

144

This list has to contain all the CSD topics

Behavioural design approach, 21
Encoders, 21

group select (GS), 21, 28
priority high, 21

Flat design approach, 21
Product-of-sums (PoS), 21

Standard combinational circuits
74HC147 - 10 to 4 line priority

encoder, 27
Sum-of-products (SoP), 21
Truth table, 21

